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INTRODUCTION

Since the recent appearance of the branch of structural optimization which
is concerned with constraints of a dynamic (natural frequencies of vibration) or
aeroelastic nature*, two trends have developed, which represent two complemen-
tary methods of solution.

The first of those makes use of mathematical programming techniques.
The structure to be optimized is either a structure with discrete characteristics,
such as a stiffened beam, or a continuous one which is first discretized: this is
the case of a beam broken into finite elements. This approach, the older, is the
one taken by Haug, et al. 2, 3, Fox and Kapoor4, Rubins, and Turner6, to name
only a few. Its advantages are obvious: complex structures can be approximated
this way with good accuracy, then subject to optimization techniques. The weak-
ness of the method, however, lies in the fact that the optimization is done after
the discretization has been made, so that it is impossible to know how close the
discrete optimum found is from the true one, and even in some extreme cases it
makes no sense at all. T In other words, there is no way of getting the optimum

within a given accuracy.

*A small paragraph was devoted to the subject under the heading "dynamic com-
pliance' in the excellent comprehensive review of the field of Structural Optimi-
zation done by Sheu and Prager1 less than three years ago. The number of

articles belonging to this classification which have appeared since is impressive,

and the subject alone now merits far more extensive review.

TThe only way to decide where to stop iterating in the optimization process is when
it appears to converge; however, it has been frequently proven that, depending on
the method chosen to arrive at the optimum, the process might pseudo-converge
to a solution which is totally irrelevant and vanishes when another optimization

method is tried.



Another approach, more recent, is that of the classical calculus of
variations whose foundations date back to the time of Euler and Lagrange and has
raised considerable interest ever since: it is applicable to simple, continuous
structures. It has been widely used by Turner'7 for his now classical bar, by
Keller and Niordson8 for the problem of the tallest column, by Niordson9 for
the optimization of a beam for a fixed first frequency of vibration, by Olhoff10
for the optimal design of vibrating circular plates. Variational principles were
also used by Prager and Tav.ylor11 and Taylor 12 and applied to continuous

systems.

In the spirit of this approach an extension was made by the use of the
techniques of optimal control theory, which are themselves ramifications of
the classical calculus of variations;its principles are expressed in a different
form, more suitable to the kind of problems encountered in the theory of control.
For the structural applications, the constraints are put under a form analogous
to that of control constraints, thus imposing the distinction between state and
control variables. The necessary conditions are then derived in the form of
a system of differential equations, yielding a two-point boundary-value problem.
Exact solutions have been found in a few rewarding cases, and numerical methods
derived in control theory, requiring discretization but only at this step, have
been applied. Accuracy can then be fixed in advance, the limitations of this
method now being due to the complexity of the structure. In other words, this is
the opposite approach from the one discussed first. This method was first
introducted by Ashley and McIntosh13 for the optimization of structures subject
to aeroelastic constraints, and applied by Armand and Vitte14 to a few simple
cases and by Weissha.ar15 to the panel flutter problem started by Turner.

A recent and detailed account of the development of the field of structural
— especially dynamic or aeroelastic — optimization will be found in some of the
references above, especially13 and in references16’ 17
The structures optimized up to now were "one-dimensional'; this means

that, due to their nature, the problems to be investigated led to constraints



expressed in the form of ordinary differential equations in one independent
spatial variable. A beam problem is obviously one-dimensional; so are optimi-
zation problems dealing with circular plates when the imposed static or dynamic
constraints have the property of axisymmetry. 10 The problems of dynamic structural
optimization wkere the constraints are in the form of partial differential equations
have hardly been investigated up~to-date. The only tentative efforts known to the
author are those of J ohnson18 and Haug19 who investigated separately the problem
of the optimization of a plate for a fixed first frequency of vibration. Both of them
make use of the method of discretization described at the beginning of this chapter,
and this is why, unfortunately, it is impossible to give an estimate of the pre-
cision which guarantees the validity of their optimal solution. Moreover,
Johnson's square plate is divided into only 25 elements, the symmetry of the
problem further reducing the acm/lra.cy to only 6 elements. Haug, on the other
hand, presents an adaptation of the powerful method of steepest descent developed
in optimal control theory to two-dimensional problems, which seems very
promising and should lead to the numerical solution of number of such problems.
The present work tries to present an adaptation to two-dimensional
structures of the methods of optimal control theory already applied to one-
dimensional structural optimization, in the spirit of the previous work done in
this area13’ 14,15,16 The corresponding branch of Optimal Control Theory is
known as optimal control of distributed-parameter systems and is, we might
say, a brand new field of investigation. The first ever made, proposing a
definition and an evaluation of the task at hand, is contained in a Russian paper
dated 196020 The systems to be considered are characterized by either partial
differential equations or integral equations to be satisfied on DxT, where D is
some spatial domain contained in the Euclidean space E" for n>1 and T is
a time domain. In the case of differential equations, there are also boundary
conditions to be satisfied. The behavior of the system can be influenced either
by mechanisms acting throughout D or at the boundary of D, or both. There is

given some functional dependent on the state of the system or its boundary



conditions or on its control, or some combination of thesé, and two types of

guestions may be asked:

i) What should the available controls be to minimize the given functional
(open-loop control) ?
ii) What should the functional relationship between the control and the

system state be in order that the functional be minimized (closed-loop control) ?

Needless to say, optimal control of distributed-parameter systems is
much more difficult than for lumped-parameter systems, and it is still a growing
field of investigation. An excellent survey containing an exhaustive list of
references is due to Robinsonzl. In his paper, both a historical and technical
presentation of the research in this domain is done. Two textbooks have appeared
recently, one by the pioneer Butkovskiy22 presenting a unifying treatment of most
of the literature that appeared previously in Russian journals and of great interest
although perhaps too broad in scope; the other one is by Lions23 and is mostly
concerned with the mathematical aspect of some particular problems.

The overwhelming majority of research up-to-date has been devoted to
linear problems. Although our scope will be more limited than the general goal
of optimal control of distributed-parameter systems, we shall never encounter
linear problems, and we will have to derive a more general approach applicable
to non-linear constraints.

We first have to define the kind of problems that we will encounter for our
purpose, which remains structural optimization: the domain DxT will simply be
the domain occupied in space by the two-dimensional structure which we consider,
referred to a set of orthonormal axes Ox, Oy. The constraint will take the form
of a partial differential equation to be satisfied inside the domain, with adequate
boundary conditions provided by the physical properties of the structure. For the
common case of a minimum-mass problem, the functional to be minimized will be
the surface integral of the thickness over the domain covered by the structure.
Generally, the deflection (in-plane or out-of-plane) will play the role of a state

variable, whereas the thickness will be in some cases the control variable.



A problem of this type is a special case of the more general one stated above,
namely a Mayer-Bolza problem for multiple integrals. The most authoritative
treatment of the general Mayer-Bolza problem in two dimensions is that of

Lur’' e24, who was the first to suspect the applications this theory might have for.
structural optimization. This paper was later reprinted in a textbook on topics
in optimization edited by Leitmannzs with some additions, in particular an
application to magnetohydrodynamics leading to a control of the bang-bang type,

itself a reprint of an article published in the Journal of Applied Mathematics and

Mechanics26. Lur' e derives the necessary conditions for an optimum for a very
general Mayer-Bolza type of problem, extending the classical methods of
calculus of variations to two dimensions.

In part A of this study, we will extend the methods used by Bryson and Ho27
in their excellent textbook on optimal control theory to the case of two independent
variables. We will be led to the definition of a scalar two-dimensional Hamiltonian,
already suggested by Lur'e, and to a set of necessary conditions for an extremal
interms of it analogous to the ones he derived by other means. The case of finite
equality or inequality constraints on the control variables will also be considered.

Part B presents an application of the theory to the case of the optimization
of a shear plate: we want to find the thickness distribution such as to minimize
the mass of this structure, the first frequency of vibration of the homogeneous
reference plate with constant thickness being required to keep a constant value.

The shear plate was chosen so as to provide a simple, though non-trivial, partial
differential equation as a constraint; an analytical solution will be found in the case
of simply-supported edges.

Our experience will then be applied to the minimum-mass design of more
practical structures, under the same constraint as above. The sandwich plate
will be treated in part C, while part D is devoted to the classical elastic plate.
Following the steps of the simple shear-plate optimization process, both of these
optimization problems will reduce into finding the solution of a system of two
simultaneous partial differential equations for the optimal thickness distribution

and the displacement mode. The necessary conditions are then in a form showing



that they are nothing but the expression of a very general sufficient optimality
condition stated by Prager for a broad class of structural optimization problems
to which the considered cases belong; they are therefore necessary and sufficient
conditions for an extremal. A numerical treatment of this system of partial
differential equations is presented in Part C for a simply-supported sandwich
plate. The uniformity of the energy distribution throughout the structure is shown

in Part E to be a sufficient condition for an extremal of the mass.



PART A

NECESSARY CONDITIONS FOR THE STATIONARY VALUE OF A FUNCTIONAL
UNDER CONSTRAINTS EXPRESSED AS PARTIAL DIFFERENTIAL EQUATIONS

1. Statement of the Problem

Let D denote a closed domain in the plane with a piecewise continuous
boundary 0D. If the plane is referred to a set of rectangular coordinates (x,y),

let the boundary curve be represented in parametric form by the equations:

X =a(0)
y = B(o)
where « and B are piecewise continuous functions of the parameter ¢ possess-

ing a first derivative in the intervals where they are continuous.

In this domain, we consider a system of partial differential equations of

the form:
Bzi
= -5 wx,y) =0
8zi
Sy—-Yi(i,li;x,y) =0 (1.1)
i=1,2,...n.

The Xi and Yi functions have to be such that they satisfy the compati-

bility conditions:

DX, DY,
1 __1_
Dy Dx
i=1,2,...n, where the derivatives above are total derivatives taken with respect

to all the arguments included, i.e.:

DX, 8Xi 9z 09X, Ou 8Xi

1 ~

— T a— + — ——

Dy 0z % ou 9y 9oy



DY,£ 98Y, 9z 9Y, Ou aYi

1 1 ~ 1 ~

Dx 0z ox ©®u 0x  9x
For a system governed by a set of equations in the form (1. 1), the vector
function z = (z

s Zigys e s
~ 1°72
system itself, and therefore the z, play the role of state variables, whereas

- zn) of the arguments x,y describes the mechanical

the functions u = (ul, . ,up) of the same arguments represent the distributed

Uy -
controls.

Equations (1.1) represent a standard form of any system of partial
differential equations: Lur’ e25 calls it the special case of the Pfaffian system.
Any partial differential equation of order superior to one or any system of such
equations may be written in the form (1.1), with the number of dependent variables
increased as necessary. The technique of decomposition is simply an extension of
the one used in the case of the transformation of a high order ordinary differential
equation into a system of first order ones by introducing auxiliary dependent

14,27 The only difference resides in the fact that a function in two

variables.
independent variables possesses k+1 derivatives of order k, whereas a func-
tion in one independent variable possesses only one: therefore the decomposition
will require the introduction of a much considerable number of dependent variables.
The compatibility conditions will help reduce this number.

The procedure is best demonstrated on a simple example, treated below.
We will then show how the decomposition is done for the general case of a single
partial differential equation in two dependent variables which we will always
encounter as a constraint in problems of minimum-mass design of structures
satisfying conditions on their frequency of vibration or on some aeroelastic
eigenvalue. Generally, one of the dependent variable will represent the displace-
ment at a point of the structure, the other representing the thickness distribution.

For the Helmholtz equation, example also treated by Lur'e in the already
referenced paper:

82z 82z
— + 3 +uz=0
ox oy



we find the equivalent system:

9x 3
3z3

oy aTM%

Here we had to introduce the new dependent variables Zgs z3,u2,u3, the

original z being denoted z_ and the original u,u,. The state variables are now

1 r

Zl’ zz, z3, while the controls are ul,uz,u3.

In the light of the example above, we are now able to explain more precisely
how the decomposition (1. 1) can be achieved in the case of main concern to us, as
we will see later, that is of a constraint expressed in the form of one single partial
differential equation in the two independent variables x and y, and two dependent

variables w and h of order n, =1 and n_ = 0 respectively in those variables.

1 2
In other words, there is present at least one partial derivative of order n in the
first variable called w, and at least one partial derivative of order n_ in the

2
other variable, called h. The most general form for this type of equation will be:

n n n n
f(w ow dw 82w o lw 3 1w o 1w 0 1w
’8x, ay’ 2,.-., nl, nl_l g e e oy n_l’ n Py
S} ox ox 9 1
X y oxay 1 dy
(continued)




n n n n

oh 9h 9°h 5 %h 5 °h 5 2n 5 2n
h, — — —,..., X e e s , ;X,y)=0
ox’ Oy 5 2 n, n2-1 n2-1 n,
= ox © ox ° oy 0xdy oy (1.1.a)

and we will assume that this equation can be solved for one of the highest derivatives

of w appearing, for example, if

n
9 lw
n
oy 1
is present:
n n n n
31w= Wa_v_la_wgi_v alw alw Blw
ny o T ox’ oy’ axz’“" ny ’ nl—l T nl-l ’
oy ox ox oy 9x9y
n n n n
h oh 9°h 5 %n » ’n 5 °h 5 %n
h, 55 30 —5 seces > 5o , ; X,y) (1.1.b)
ox’ By’ , 2 n,” ny-l n,-1
ox ox oy 0xdy oy
nl(n1+ 1)
We will introduce 1+2+... +n1 = auxiliary variables z, as
follows:
W=z,
o
1 _ 0w
ox 2 S
g
1, _ow
9y 3 T 9y
0
"‘_Z_Z' =2z — .6_221)
ox 4 -
sz
o
2_ _o%w
ay 5 = 9xdy

(continued)
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3,
ox 5
9z

% ~Da,-2)

+1
2 .
9x n. (o, -1)
171
—_+1
2
%% _1)n,-2)
._1_—1__. +1
2 =z
- -1
dy D, (0, )+ 5
2
oz
(n,-1)(n -2)
1 1 1 +2
2 -5
ox nl(nl—l)
+2
2
%20 1), -2)
__1_—_1__ +2
2
=1z
oy n,(n,-1)
V1 +3
2
Z
n,(@;~1)
2
=z
ax n, (n,+1)
11
B -1

(continued)
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oz
B, @, -1) n -1
—_ 1
-2 _, =21,
oy nl(nl+ 1) , n1-1
s y
The (n1 + 1) u variables are now introduced as follows:
azn (n,-1)
171 n
—+1 1
2 ~u S0 w
ox i | = nl)
ox
0z
nl(nl-l) n
+1 1
2 =1 (= 9 w )
oy 2 n_ -1
ox oy
Z
nl(n1+ 1) nl
2 —u = 0w
ox n, . n-1)
9xdy
7
nl(n1+ 1) nl
2 —q ) w)
dy B WS | " n
1 1
9y
n2(n2+1)
We now do the same for the dependent variable h, introducing —
auxiliary state variables hk and n2+1 auxiliary control variables v x follow~

ing an identical procedure.
Now the given equation will be replaced by the two systems formed above,

together with the condition:

un1+1 = CP(ZI’ZZ’Z:?»"'"an(n1+1)’ ul,... n * 0y oo Bose e

2
(continued)
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hnz(n2+ 1 YvVerro ’Vnz +1

2

(1.1.c¢)

In the case of a constraint of this type, the role of the control variables is
played by the u and v variables, while the z and E define the state of the
mechanical system. The z and E are the state variables z of (1.1) whereas
the u and v are the distributed controls u.

The decomposition of a partial differential equation or of a system of the
same into a system of the form (1. 1) is of course by no means unique. A question
of definition of the controls arises too, as can be seen in the following example.

Consider the partial differential equation, in the two dependent variables

w and h, that we will encounter as a constraint in part B:

3] ow 9 ow 2
&‘hax“ E)y(hay)Jrk hw =0

By the process described above, this equation is equivalent to the system:

W=z
oz ow
ox 2 " ox
oz ow
T "o
ox 1 = axz)
2 _ %
oy 2 ~ 9xdy
ox 2 oxdy
oy 3 8y2

(continued)
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x 1
o,
oy 2
a2, 1f2Ve%
Ug = 71y 7% 27 h

where the role of the control u is actually played by u 1,u3,v 1,vz,u 9 bringing

no contribution to the system itself as can be seen from the constraint. Because

of its special nature, the given equation is also equivalent to the somewhat simpler

system:

w = z1

o

z1 _ i?_

ox h

o
i W

oy " h

9

& 1

o

dy 2

0
Zs_

ax 3

o0z

2

By = —ul—k hz1

,u.,u., the definition

where the role of the control is now being played by h, u; Uy, g

of the u being different than from above.
We will show in Appendix 1 that, although the two systems and the two
controls are not the same, the same final result is obtained for the same optimal

problem they both describe.

14



Let us now go back to the statement of the optimal problem. We now
have to describe the boundary conditions.
We assume that the first m < n functions z, are prescribed along

portions X of 38D:

Z, = z.(0) i=1,2,...m (1.2)
i i
=
The simplest Mayer-Bolza problem is now formulated as follows: in a
suitable class of functions, to which we will come back later, determine the state

variables z and controls u so as to minimize the functional:

~

J = fz(g;c)do + ffL(i,g;x,y)dxdy (1.3)
8D D

subject to side conditions (1.1) and (1. 2).

The problem may be complicated by considering boundary controls on
movable boundaries and/or constraints on the state or control variables. The
case of boundary controls and that of constraints on the state variables will not
be investigated in the present study; the former can be found, treated in some
details, in Refs. 24 and 25. However, we will investigate the case of constraints
(finite equalities or inequalities) on the control variables in section 3 of this

chapter.

2. The Necessary Conditions

Following the methods of optimal control theory in one single variable, we
adjoin the system of partial differential equations (1.1) to J with the help of

vector multiplier functions A(x,y) and u(x,y).

9z
J = fz(z;o)da +”{L(3,g;x,y) + &T(X,y)[X(z,u;x,y) _Bil +
oD D

(continued)
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T oz
o &Yz, WX,Y) - o0 } dxdy (2.1)
We define a scalar function, the Hamiltonian, as

T T
H(z,wx,y) = L(z,4;x,y) + A" (X, y)X(2,u;X,y) + p” (X,5)Y(z,ux,y)
(2.2)

J is rewritten then as:

T oz T 0z
J = fz(g;a)da +ff {H(g,g;x,y) SAEY) oo (%) a—;}dxdy
oD D

(2.3)
If we add and subtract the quantity:

T T

oA 8E
oy |2

to the second integrand, J takes the form:

Al "
4
J = fz(g;ff)da +[[{H(g,g;x,y)+(8—;—+ g)g}dxdy
oD D
8 T 9 T
-Jf {'a;(l 9+ 55l 2 dxdy
D

Now, by the use of Green's formula (*), the third integral becomes a line

integral as follows:

g T g T T T
ff{g(ﬁ 7)o 5§dxdy= Jlax -2 ayz (2.3)
oD

D

Then the integral (2. 3) takes the form:

(*) which is the counterpart in two dimensions of the classical integration by
parts in one dimension.

16



S o @ - \Tp @nze0 (2.4)
oD

and J becomes:

i- f {a(g;o)—[fﬁ' © - p'a (U)]g,} do
8D
al 5T
+[/{H(5,g;x,y)+[g;+ ng}dxdy (2.5)
D

Now consider the variation in J due to variations in the control vector

g(x, y):

6J = f[—+7\ ﬁ(cr)—p,Ta (o)] Szda

BT

T~ ] oH
ff{ ) +£55} dxdy (2.6)

We now choose the multiplier functions A(x,y) and (x,y) to cause the
coefficients of 6z in the surface integral above to vanish, therefore escaping to

the task of computing the 5z in terms of the variations du of the controls:

87\T 3u,T
AT S QE (2.7)
ox oy oz :

Along the portions of 8D where the zi are prescribed,

6z =0, i=1,2,...m,

Along the other portions and for the Zj’ j=m+1,...,n which are not at

all prescribed, we ask the relations

17



B ) - plar @) = - 22 (2.72)

to hold along 8D: they serve as boundary conditions for the system (2. 7).

(2. 6) then becomes:
OH
6J = ffau 63 dxdy
D ~

For an extremum, 6J must be zero for arbitrary Su(x,y); this can only

happen if:

(2. 8)

Z|E
lol

Equations (2. 8) are analogous to the control equations derived in one-
dimensional optimal control theory.

Equations (2.7), (2.7a) and (2. 8) are the Euler-Lagrange equations of the
classical calculus of variations, for two independent variables. They form a set
of necessary conditions for an optimum.

In summary, to find a control vector function E(X’Y) that produces a

stationary value of the performance index:

J = f ,E(E;U)d()' + ffL(z,u;x,y)dxdy (1.3)
oD D

we must solve the following system of partial differential equations in D:

oz

=Xz, ux,y)

0z

3y~ S(Z,0X,y) (1.1)
Y T

) : | (2.7)
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e T
B —

== =0 (2. 8)

where the Hamiltonian H is defined as:
T T
H(z,u;x,y) = L(z,wX,y) + A (x,y)X+ u (X,y)Y (2.2)

The boundary conditions are:

z.| = z.(0) i=1,2,...,m (1.2)
il i

(the  are the portions of 8D where the first m variables z, are prescribed)

a4
AB'(0) - p.a'(0) = - 7 i = -
;#'(0) - u,0' (0) oz, , i=1,2,...,m (2.7a)
along 0D-2%, and:
04
A B (o) - o) = - — j = )
jﬁ (o) by o (0) g j=m+l,.%.,n (2.7a)

]

along oD.

We have n+n+n+p = 3n+p equations for the 3n+p unknowns z,A,pu, and

e

3. Equality and Inequality Constraints on the Control Variables

For most of the structural optimization problems that we will consider,
the role of the control variable will be played by the thickness distribution which
we wish to render optimal. For obvious physical reasons, we do not want, in
most cases, for this thickness to be zero along a line interior to the structure
(leading to the formation of a hinge, subsequently causing the collapse of the
structure). Such an inconvenience might be taken care of by the adjunction to
equations (1. 1) and (1.2) of a minimum thickness constraint, which will appear

as an inequality constraint on the control variables.



More generally, suppose we have restrictions imposed on the control

functions in the form of r finite equalities:

Ck(u;x,y)=0, k=1,2,...r 3.1)

and s finite inequalities:

D!I(E;x,y)zo, £=1,2,...,s (3.2)

We assume that there exists a solution to equations (1. 1), (1.2) under
the restrictions (3.1), (3.2) imposed on the control tunctions.

A way to transform the inequality constraints (3. 2) into equality con-
straints is to introduce supplementary artificial controls 5* = (uI,u*, . ,u;),

2
following a traditional technique, by virtue of the following equations:

2
*“ = 0, £=1,2,...,s (3.3)

* — D . —_
D z(g,x,y) uy

£

and to add these controls to the previous set of u, therefore considering only
r +s equality constraints with an augmented number of controls.

This point of view is the one adopted in Iur'e's paper24. We will
present here another method, again directly inspired from the methods of
optimal control theory, in particular of Ref. 27, Chapter 3.

Consider the case of equality constraints first., Clearly, the dimension
of the control vector u must be greater or equal than 2 for the problem to be
interesting, since for m = 1 the constraint (3. 1) determines u(x,y) completely
and there is no optimization problem left.

We adjoin (3. 1) to the variational Hamiltonian with a set of Lagrange

multipliers v(x,y) = (vl (X,¥)s--+ vr(x,y)) as follows:

T
H = L(z,ix,y) + A (X, 9)X(2,0x,3) + 4 (X,7)¥(z, 0%, 7)

+ vT(x,y)E(E;x,y) (3.4)

The only change this brings about is in the optimality conditions:
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on_oL ,r 2 X 1% 5.5)
Bu 8u~8uf%3u ~ Ou (3-

which, together with (3.1), represent p +r conditions to determine the p-
component vector u(x,y) and the r-component vector v(x,y).
Now consider the inequality constraints (3.2). In the same way as above,

we introduce the s-dimensional vector £ (X,y) the components of which are the

s Lagrange multipliers §1(x,y), ...,E s(x,y), and define
H=L+\X+, Yy +£°D (3. 6)

The necessary condition to be satisfied by this augmented Hamiltonian is:

3
u odu ~ ou & 2 u— 3-7)

which is the same as above with the additional requirement that:

<0, D =0
g’z £
or:
=0, D 0 =1,2,...,8 3.8
3 P 0> 2 (3.8)
Another approach is the following, again in the case of s inequality
constraints:

Dz(u;x,y)zo £=1,2,...,s8 3.2)
If we define H* as:
H*=1 + 7\TX+’H:TY

(which is nothing but the Hamiltonian defined for the case when there are no con-

straints on the control variables), then, from (2. 6):

f —_ 5u dxdy (3.9)
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and this is, by definition,

8J ./fGH*(z,u,K,B;X,Y)dXdY
D

where the and the p satisfy the set of partial differential equations

[

?

Al o
o~ =~ __ 8%
ox y oz 2.7

with boundary conditions:

T T 9
AR (@ - a'(0)=—5f (2. 7a)

holding along the portions of 6D where 2 is not defined.
For the control E(x,y) to be minimizing, we must have:
6 =0

for all admissible 6E(x, y). This implies that we have:
SH*=>0

for all admissible du(x,y) and this all over the domain D.

Hence, at all points on D = 0 the optimal u has the property that:

OH *
SH*=—"56 .
H¥=——6uz0 (3.10)
for all 6u such that:
8DZ
6 = — 6 = ..
Dz 3 320, 4=1,2,...,8
which yields (3. 7).
Another way of stating (3. 10) is to say that 6 H* must be non-improving

over the set of all possible Su.
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Actually a much stronger statement, '""H* must be minimized over the
set of all possible u " holds. This compact statement is the extension to two-
dimensional systems of the famous "Minimum (or Maximum, the distinction
being due to a different convention in Russian literature and elsewhere to write
the Hamiltonian H*) Principle"zs. A rigorous proof of the above can be found
in a paper by Butkovskiyzg, in one by Egorov30, and in the already referred
to paper by Lur' e25, which presents an extension of the Weierstrass conditions
of the classical calculus of variations to this type of problems and is nothing
but an alternate way of stating the Minimum Principle.

A remarkable approach using the function-space formulation is found in
a recent paper by Neustadt31, who presents in the general non-linear case an
abstract Minimum Principle covering almost all constrained minimization
problems ever considered, including lumped and distributed variational problems

under a variety of conditions.

4. Discontinuities in the Distributed Controls

In the definition of the general problem given in section 1, we spoke of a
"suitable class of functions'. It is now appropriate to explain this notion, and to
specify in detail the class of admissible controls and possible behavior of state
variables.

The distributed controls will be assumed to belong to a class of functions
no less wide than the class of piecewise continuous functions in two independent
variables. Possible discontinuities of distributed controls may occur along
smooth, closed isolated curves A lying entirely inside the domain D.

The state variables z, are assumed continuous across a curve such
that A; the variables u]. are in general discontinuous, but their values on
both sides of A are connected by the requirement that the tangential derivatives
Bzi/ 80 along A be continuous, that is, if we denote by a subscript — the values
of the variables attained on the curve A from one definite side of it, by +their

values attained from the other side,
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XY@+ Y8 (0)]_= KY'(@+Y38' (0], i=1,2,...,n (4.1)

Recall that the curve A has the parametric representation:

X = Y(0)
y = 6(0)

v and & being two piecewise continuous and differentiable functions of .

25
It can also be shown  that along such a line of discontinuity of distributed

controls A:

A8'(0) - Y @)= A8 (@ -uy' @, i=1,2,....0 (42

- 2% - Y = AR - Y

~ o~ - ~ ~

(4.3)

5. Remarks and Conclusion

The necessary conditions have thus been established in a very general
case of distributed-parameter systems. We are now confronted with a set of
partial differential equations to be solved with adequate boundary conditions,
which represent the first-order necessary conditions for an extremum.

The original optimization problem is therefore reduced to that of the determi-
nation of solutions for this resulting set of partial differential equations. This latter
task unfortunately proves to be an extremely difficult one when we try fo solve
this system for some specific cases. The reason is clear: even for the
simplest of all problems, the system formed by the necessary conditions will be
greatly complicated. We start from one single partial differential equation as a
constraint. This equation has to be broken, as shown in section 1, into a set of
first-order equations, having now n variables z, and p controls uj. After
writing down the necessary conditions, we are left with a system of 3n+p
partial differential equations in 3n+p unknowns. It is therefore understandable
that only in very special cases can we find a rigorous analytical solution to a

given optimization problem. One such problem of structural interest is presented
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and solved in the next part of this study. The approach to the more complex,
but at the same time, more realistic problems presented in parts C and D

seems to have to be numerical at this stage of their solution.
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PART B

MINIMUM-MASS DESIGN OF A SIMPLY-SUPPORTED SHEAR PLATE
FOR A FIXED NATURAL FREQUENCY

A plate-like structure with special properties will be described and
analysed.

Given the shape of a homogeneous '"'shear plate' with constant thickness,
we find its fundamental frequency of vibration. The problem considered is then
to determine the thickness to be distributed within the same boundary so as to
keep the above fundamental frequency constant while achieving the minimum
possible mass. Only for simply supported edges will a complete solution be
given.

Stating the problem in mathematical form, we are confronted with a
situation of the kind investigated in part A, for which an exact analytical solution

will be found in the case of a rectangular or a circular boundary.

1. The Shear Plate: Definition and Analysis

We define a shear plate as a rather artificial plate-like structure such
that the bending rigidity for normal loads is negligible: the running load is thus
borne by shear only.

We refer the plate to a set of rectangular Cartesian axes Ox, Oy in the
middle plane of the plate; the plate occupies a simply connected domain D with
a smooth boundary o6D.

Now let us consider a rectangular element with sides parallel to the
coordinate axes and with lengths dx and dy respectively, around a point
P(x,y). Let h(x,y) be the thickness of the plate, p(x,y) its density, both at
P, and let w(x,y;t) be the normal deflection of P at time t. We choose the
axis Oz directly perpendicular to Ox and Oy.

The forces acting on the above element (see figure 1) are all parallel to

the z-axis. They are, in projection on Oz:

26



-

|

Az
0 y
X
I hr,, dy
! /’
l v
I 9
I | "'[h’l‘yz+ 3y (hryz)dy]dx
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/
/
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dy -———-—/

J
[h'rxz-l- ™ (hty, )dx]dy

Figure 1. Shear forces acting on the sides of an infinitesimal element of plate.
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a) the shear forces:

B(szh)
= d =+ +
szhdy an szh o dx | dy
on the two sides perpendicular to Ox.
a(r Zh)
-7 _hdx and + [T h+ —X2— dy)dx
yz yz 9y

on the two sides perpendicular to Oy.
b) the d' Alembert force:
2
~oh a—;” dxdy
ot
From equilibrium,

8(h'rxz) 8(h‘rﬂ) 2

+ - ph =0
ox oy 5t

But the classical stress-strain relations read

ow
= = G —_—
sz nyz ox

r =gy -
yz vz ay

so that the differential equation of motion takes the form:

az_w:
2
ot

0 ow o ow e
—th—)+ —(h—) - 0 1.1
ax( 8x) ay( ay) Gh (1.1)
This equation must be satisfied inside the two-dimensional domain D
bounded by the frontier 8D. Let us now examine the boundary conditions.
If the plate is supported at points (x 1Y 1) on segments of the boundary

8D, we have the boundary condition:
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w=0 at (xl,yl) (1. 2a)

If, on the other hand, the plate is free to deflect transversely at some
other points (xz, y2) on different segments of the boundary, there cannot be any
shear component in the transverse direction. Consequently the boundary con-

dition at such points is:

aw

G E =0 at (x2,y2)
or
oW _
o 0 at (xz,yz) (1. 2b)

The boundary curve 98D contains all points such as (xl,yl) and (xz,yz),
and only one of the boundary conditions (1. 2a) or (1.2b) must be satisfied at a
given point on the boundary.

We will confine ourselves to the case of a homogeneous plate (p =
constant). Let us investigate the nature of the free vibrations of the shear plate

with constant thickness.

With h = constant, the equation of motion (1. 1) becomes:
2
0
GVPw = p == (1.3)
8t2

which is in the same form that the equation of the free vibration of a membrane
where G plays the role of the uniform tension T of the membrane.

Following the classical procedure32, we write the displacement w as the
product of a function W of the spatial coordinates only and a function f depend-

ing solely on time:
w(x,y;t) = W(x,y) £(t)

(1. 3) becomes:

W
W

°(Q
H'JIH!
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where the superscript (') denotes a derivative with respect to time, and the
2

common value of these two ratios has to be a constant, -w , negative for

reasons of stability. f is then harmonic with frequency w, and W satisfies

the partial differential equation:

-GV2W=w2pW (1.4)

inside the domain D, together with the boundary conditions:

wW=20 at (xl, yl) (1. 5a)
oW _
on 0 at (xz, yz) (1. 5b)

The eigenvalue problem represented by equation (1.4) together with the

boundary conditions (1.5) is of the classical type:
L[W] = AM[W]

where the operators L and M are respectively:

L= —GV2
M=p
with boundary conditions independent of the eigenvalue A. The problem is easily

shown to be self-adjoint33: if Wr and WS are two eigenfunctions corresponding

to two distinct eigenvalues }\r # ?\S, then they satisfy the orthogonality relation:

fprrWSdD=0, r# s.

D

Also, it can be shown, as in the classical membrane case, that if the
boundary condition (1. 5a) is satisfied over part of the curve 8D, the system is
positive definite, and that if the boundary condition (1. 5b) is satisfied over the
entire length of 8D, the system is only positive.

To pursue the discussion further, we shall confine ourselves to an

investigation of the properties of rectangular and circular plates only.
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1.1 Vibrations of Homogeneous Rectangular Shear Plate with

Constant Thickness

The plate extends over a domain D definedby 0sx<a, 0<y<b. The

boundary 0D is made of the straight lines x=0,a and y=0,b. Let:

we=2
G (47

and write (1.4) as:

2 2
V'w+gw=0 (1.6)
where the expression for the Laplacian in rectangular coordinates is:
2 82 82
V = —2- + '—2
ox oy

(1. 6) is solved by separation of variables; to this end, we let the solution

have the form:
W(x,y) = X(x) Y(y)

and, after substitution in (1.6) and rearrangement, obtain:

2 2
1 dXE) 1 4y, 2

X(x) dx2 Y(y) dyz

=0

which leads to the equations:

2
d X(x) );x +BZX(x) = 0
dx
d°y 2
X0 4 Py = 0
dy
where
2 2 2
B +Y =«
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so that, introducing four constants of integration Al’AZ’A3’A 4’ the solution W

has the form:
W(x,y) = A, sin x sin vy + A, sin px cos vy + A cos Bx sin vy

+A4 cos Bx cos Yy 1.7)

where A1’A2’A3’A 4 as well as B and Y must be determined by means of the

boundary conditions.

a) Plate Simply-Supported Along the Edges

The boundary conditions then read:
W(0,y) = W(a,y) = W(x,0) = W(x,b) = 0 (1.8)
The first and third one of the above conditions lead to:
Az = A3 =A i 0
whereas the second and the fourth imply:
sinfa=0
sin Yb=0

and yield an infinite sequence of discrete roots:

=m—ﬂ, m=1,2,.
m a
nw
=-—’ =1’2’
Yn b n

so that we are led to the eigenvalues solution of the problem:

2 2
2 2 m n
= + = - + (— =
o . \’B ’Yn T (a) (b) m,n=1,2,...

The corresponding modes are:
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X1y
BTE gin =3 (1.10)
mn mn a a

The fundamental frequency of vibration is obtained for m =n=1, and has

the value:

/G [
o= \fp = p(az +b2) (1.11)

b) Plate Simply-Supported Along Two Parallel Edges and Free Along the

Other Two

The boundary conditions now read, assuming the plate to be simply-

supported along the parallel edges x=0 and x=a:

W(0,y) = W(a,y)=0

L (x,b)=0 (1.12)

oW
ay (x’ 0) - 8y

The integration constants in (1.7) are determined then from the first
boundary condition:

A3 =A 4= 0

From the third one:

A1=0

and from the two remaining ones:
sinpa=0
sinvb=10

B and 7y have to take the discrete values:

p =2¢ m=1,2,...
m a

nw
‘Yn—b n=1,2,...

33




The frequencies of vibration are the same as in case a) above. The

modes are now being given by:

X cos Y | m,n=1,2,... (L.13)
mn mn a b

c) Free-Free Plate

For this idealized case (realizable in practice by assuming the plate to

be simply-supported at its center), the boundary conditions read:

oW ALY
ay (X,O) - ay (X,b) =0

oW, _OW
&—(O,y) = 9% (a,y)=0 (1.14)

The natural frequencies of vibration are the same as in case a) or b). The

natural modes are now given by:

W__=C__ cos PXX gos BoY | m,n=1,2,... (1.15)
mn mn a b

1.2 Vibrations of a Homogeneous Circular Shear Plate with Constant

Thickness

The circular plate extends over a domain D defined by 0< r < a; the
boundary of the domain is the circle 8D described in polar coordinates by the
equation r = a.

With polar coordinates r and ¢, the differential equation to be satisfied

throughout D is:

2
vV W(r,e) + azW(r,e) =0 (1.16)
where
2 mz
=2p
® =G

Assuming a solution of the form:

34
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W(r, 8) = R(r) (6)

and recalling that in polar coordinates the Laplacian is given by:

2
2_9
vV = 2+

or

Cill
892

f=s

9

1
T2
or r

La

(1.16) reduces to:

2 2
TR, R0, 2y
dr” r dr r-de

which can be separated into two equations:

2

d 5 +m’e =0 (1.17)
de

2 2

d_._lg +ld-]i+(a2-m7-) R=0 (1.18)
dr r dr r

The constant m2 is chosen to obtain a harmonic equation for @ ; further-
more, the solution must be periodic in 6 with the period 2r; m has then to be
an integer (m=10,1,2,...).

(1. 17) yields as solution:

e (8)=C sinmg + C cos mo, m= 0,1,2,...
m Im 2m
(1.18) is a Bessel equation and its solution is:
= + = ‘e
Rm(r) C3mJ m(ar) C 4mYm(oc r), m=0,1,2,

where Jm(x) and Ym(x) are the Bessel functions of order m of the first and
second kind, respectively.

The general solution of (1.16) can then be written:

Wm(r, 9) = Alme(ozr) ein me +A2me(ar) cos mé +A3mYm(ocr) sin m®
+A4mYm(oa‘) cos mb , m=0,1,2,... (1.19)
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a) Simply-Supported Plate

The boundary condition reads:
W(a,0)=0

At every interior point of the plate the displacement must be finite: but
Bessel functions of the second kind tend to infinity as the argument approaches

zero. It follows that:

A3m-_TA4.m=0

so that (1.19) reduces to:

Wm(r, 9) = Alme(ar) sin m# +A2me(ar) cosmg, m=0,1,2,...

At r =a we must have:

W_(a,8)=0, m=0,1,2,...
m

regardless of the values of 8, which implies:

J (a@)=0, m=0,1,2,,..
m

This equation represents an infinite set of characteristic or frequency
equations, and for each m there is an infinite number of discrete solutions
o o The fundamental mode of vibration is obtained for m = 0; as the first

zero of J O(x) occurs at x = 2.4048, the fundamental frequency is given by:

[
0y = 2-4048 > (1.20)
pa

and the corresponding mode by:
r
w 1= A01J0 (2.4048 a) (1.21)

For the upper frequencies © there are two corresponding modes to

one particular frequency: the modes are then degenerate.
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b) Plate Free Along the Edge

The boundary condition now reads:

)
S W,e =0
r=a

As above, the displacement at the center has to be finite, so that the

solution is in the form:

Wm(r, 0) = Alme(ar) sin m6 + Aszm(ar) cosmb, m=20,1,2,..
The boundary condition thus requires:

d

ar ") lr=a =0

But, by a property of Bessel functions34

L 3y = - a3 for)

d m
- = - =1,2,...
ar I ler) =ald (o) o J (o)) m=1
the first formula being only a particular case of the second one if we note that:
m
= (- =0 2,...
I ®=C1"3_®, m = 0,1,
Thus we must have:
m
Jm_l(oza) s Jm(aa) =0

This equation represents an infinite set of characteristic equations, and
for each m there is an infinite number of discrete solutions % 0 corresponding
to the zeros of this transcendental equation. The lowest freguency corresponds

to m =0 and is obtained from the first zero of J 1(X), occuring at x = 3.8317;

thus,
o =3.8317 |2 1.22
01~ % 2 (1.22)
pa

and the corresponding mode is:
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r
W (r,0) = A, T (3.8317 ) (1.23)

OlJO
Again, for each frequency © oo B # 0, there are two different modes,

and it follows that for m # 0 the natural modes are degenerate.

After this preliminary study of the vibrations of a shear plate, we now
are ready to set up the optimization problem. We note that in the case of a
circular boundary the optimal thickness distribution will evidently be rotation-
invariant (symmetry about 0 and about any axis through 0), i.e., independent of
0, and the optimization problem will then reduce to the classical case of one

independent variable, in this case r, encountered in optimal control theory.

2. Optimization of a Simply-Supported Shear Plate

Let us consider a simply-supported shear plate extending over a domain
D bounded by the curve 8D. We assume that the material constituting the plate
is homogeneous with density p and that the thickness is a constant h O; the mass

of this reference plate is thus:
M0 = phOG.

where G is the area enclosed inside the boundary 8D. The fundamental
frequency of the plate is Wes @S found above in the cases of a rectangular plate
and of a circular one.

We then want to find the optimal thickness distribution h(x,y) relative
to an orthonormal set of coordinates such as fo yield a minimum of the surface

integral:

M=pf£ h(x, y)dxdy

or, equivalently, the surface integral:
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R iy

J=[/h(x,y)dxdy (2.1
D

the constraint the first frequency of vibration be W being expressed under the

form of the partial differential equation:

9 L ow, 0 8w, . p 2
o ax)+8y(hay)+Gmfhw—O (2.2)

to be satisfied inside D, together with the boundary condition:

w(x,y) =0 on aD (2.3)

2.1 Necessary Conditions for an Optimal

Following the method derived in Part A, we break the partial differential
equation (2. 2) into a system of first order partial differential equations, with the

help of auxiliary variables z, and uj.

Let:
Zl =W
z —p ¥
2 T 8x
ow
= h —_—
3" "y

o %

ox h

oy h

.

ox 1

8z2

—< -

oy 2 (continued)
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5,
ox 3
&
3 p 2
3y - - -G u.)fhz1 (2.4)

z,. =0 on oD (2. 4a)

The Hamiltonian is now formed:

Zy %3
7\ —+A + A
=Rt A AU T AU Ty T Yy
e
-+ - -
p,3( u1 G fhz ) (2.5)

and the necessary conditions for an extremum of J are:

40

1 P 2
_ — =
= oy G rHel
A
i
ox 8  h
A
i T
ox dy h
7\Z p,Z
1- 122' 123'8“)?“321:0
h h
A - —
g ~Hg =0
o = 0
Ay =0 (2. 6)

The boundary conditions are:



A. 1 - 1] -
5B (0) — g0l (@) = 0

xsf,' (o) - p,3a' (©) =0 (2. 6a)
on 9D, uniquely determined by the parametric representation:

X = (0)

y = B(9)

and they reduce to, considering (2. 6):

A=y =0 (2. 6a)

on 8D.
Now the first three equations in the system (2.6) are very similar to the

first two and the last of the system (2.4). We are thus led to the assumption:

Z
A =2
1 o
s
I-L]_ e
V4
1
A= = - — 2.
2 Mg o (2.7)

where ¢ is any constant.

Note that this assumption is compatible with the boundary conditions

on 8D.

The control equation reduces to:
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Z2 Z2 Z2

2 3 _221_
I-—=-"3%%'c%a ~°

ah oh

or, expressed in terms of the old variable w:

ow 2 5w 2
(&‘) +(g) =@ +

Qo

w?wz (2. 8)

which is a nonlinear first order partial differential equation to be satisfied by w,

together with the boundary condition:
w=20 on oD (2. 8a)

(2. 8) is a necessary condition for an optimum; we will show in Part C
that it is also sufficient, as it is nothing but the expression in the particular case
of a shear plate of an extremely general sufficient condition applicable to a broad
class of structural optimization problems. Thus the whole optimization problem
reduces to solving this partial differential equation: ifa solutionto (2. 8) canbe found
that satisfies the boundary condition (2. 8a), then the solution of the original
problem can be immediately derived from the knowledge of w.

Equation (2. 8) shows us™ that @ has to be positive: let

2
a = ¢

Also, let:

2 2
wf——k,

Qfo

and write (2. 8) in parametric form, introducing an unknown function 6 (x,y), as:

\/ c2 + kzw2 cos 6(X,y)
/ 2
%w; = c2 + k2w sin 0(x,y)

From the fact that the value of the second mixed derivative of w is

i

R

independent of the order of the derivations:

*w attains the value 0 on the boundary, which is part of D.
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1 kzw 2! cos 6 - cz+k2w2 2 sin 6
9y dy
2 .2 2
¢ +tk'w
= 1 kzw-a—w- sin 9 + cz+k2w2 8—e-cose
ox ax
2.2 2
c +tkw
or:
98 . . o908 _
coseax+s1neax—0

which is a linear first-order partial differential equation that has to be satisfied

by o(x,y).

35
The characteristic lines are given by the system

cos6 sind 0

and are therefore defined by

-X sin® + y cos@ = constant

9=90

The characteristics are therefore straight lines, along which 6 keeps a
constant value.
On the boundary 8D, w has the constant value 0; therefore,
ow ow
dw=— dx+— dy =0
W= T oy y
or

cosp dx + singdy = 0

which shows that 6(x,y) has a geometric significance: it is the angle that the
normal to the contour 6D, oriented outwards, makes with a direction parallel to
the x axis. The characteristics, which are, as we recall, straight lines along
which 6 keeps a constant value, are therefore the normals to the contour. At any
point P interior to the domain, the value of 6§ is that of the angle the normal to
the contour drawn from that point P makes with the direction Ox (Figure 2).
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Figure 2.

!

Solution of the partial differential equation (2. 8) for a
general domain D: definition and interpretation of the

different quantities introduced.



At P,

dw =V cz+ kzw2 (coss dx + sing dy)
= V2 k%w? dp

if p is the distance from P to the boundary 6D, measured along the normal
to the boundary pointing outwards.

Thus:

dw
vV cz+ kzw2

or, integrating:
L ,/ 2 2 2%
p-p0=E—10g(kw+ c+kw ),

which is:

dp =

m

C

W= sinh[k(p-p,)], e=%+1

For a point on the boundary (p= 0), then w = 0: this shows that the con-

stant Py has the value zero, and the solution to (2. 8) is simply:

sinh(kp) (2.9)

where we recall that p is the distance from P(coordinates x and y) to the
contour oD.

For a given contour, there are usually many normals that can be drawn
from a point interior to the domain it encloses (figure 2). Thus the question
arises to decide which normal to consider to define the distance p: it seems
logical (and turns out to be the only solution for a rectangular plate) to take for
p the shortest distance from P to the boundary &D.

Another approach to equation (2. 8) that reduces it to a form encountered

in the theory of plastic torsion of a cylindrical beam is given in Appendix 2.
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We now apply the above result, valid for any domain D under the general
assumptions outlined at the beginning, to a rectangular, and then to a circular
shear plate.

From a point inside a rectangular domain, we may draw four perpendiculars
to the boundary. Therefore we have to consider 4 domains labelled (1), (2), (3), (4)
as represented in Figure 3, delimited by the boundary, the bisectors of the 4
right angles at the corners and the segment joining their points of intersection
two by two (the latter reducing to a point in the case of a square plate). In each
of those domains, the shortest distance of a point to the boundary is readily
expressed, and this leads to an analytical expression for w, taking a different
form in each domain*.

Let the boundary be formed of the lines x =0, x=a, y=0, y=b. We
may always assume, without any loss of generality, that a > b. Due to the
symmetry of the problem, we need only consider one-fourth of the plate, for
instance the portion delimited by the lines x=0, x=2a/2, y=0, y = b/2.

In region (1), w is a function of x only:

W= ek—c sinh(kx)

and the optimal thickness distribution is found from (2. 2) which reduces to:
) .
&[h cosh(kx)] + kh sinh(kx) = 0
The general solution to this partial differential equation of a special type
is readily found to be:
@, (¥)

h = — 5
cosh (kx)

*Note that it is easy to see why the shortest distance to the boundary has to be
chosen in this case; another choice for p would not allow either the condition
w = 0 to hold along the boundary 68D or the displacement w to be continuous
inside the domain D.
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- - - 800000100008 - - -
ooo I 0oo @ W=—€R°- sinh[k(u—x)]
o o
@
ooo oQo
© | (¢]
o o
o o
> o -
o a x
W=ikc—-sinh (ky) I

Figure 3. The division of the rectangular plate into four regions, and

the corresponding expressions for the optimal displacement w.
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where Bl(y) is an arbitrary function of y.
Similarly, the optimal thickness distribution in (2) is given by:
G, (x)
h= —
cosh (ky)

Now the shear force has to be continuous when we cross the boundary from

region (1) to region (2); this means that the expression:

-

hVw:- n

=
If

has to be continuous across any line with normal n. In particular, between (1)

and (2), we must have:

ow Oow ow

ow
= h
ox By)l(l) ox ay)!(z)

or:
h %l = -hg—;’
1) 2
But:
ow,  _ 2w

=3 = ec¢ cosh(kx)
= ly ¥lg

as the boundary line is defined by the equation y = x.

Thus it is necessary that:
h=0

on the segment y =x, 0 < x< b/2, which implies that

and
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The optimal solution is therefore the trivial one, zero. This result
should not surprise us, as we already encountered it in one-dimensional
cases7’ 13,14 The trivial solution is a consequence of the constraint equation
being homogeneous in h. We also know from past experienee14 that introduction

of 2 minimum thickness constraint will not be of any help.

2.2 The Structural Mass Hypothesis

The way to overcome this difficulty is to assume that the fotal mass of the
plate is made up of two parts with drastically different structural properties: a
constant fraction & 9 is non-structural, whereas the remaining part of the mass,
labelled structural, is originally in the proportion & 1

The thickness is expressed as:
= *
h(z,y) =8 h*x,y) + 5,
where

61+62=1

h* will often be referred to as the "virtual thickness'", by opposition to
the actual thickness h.

Note that the non-structural mass is not at the control of the designer,
and that we are trying to minimize the total mass by acting on the intermediate
variable h*.

The problem is then set up as follows: minimize the total mass

M =p /]h(x,y)dD - p8 [/h*(x,y)dn +pS,@
D D

or, equivalently, the surface integral:

J* = ffh*(x,y)dxdy (2.10)
D

kg




with the constraint:

O x84k BW,

e 2 _
ox 0* ) T gy (0% 5y) TG ¢ (B h* + 8w =0

1
w=20 on oD (2.11)
The optimization process is similar to the one already performed; under

exactly the same assumptions on 7\1, 7\2, yobg We find that the optimal displace-

ment mode w has to satisfy the first-order partial differential equation:

ow 2 ow, 2 2 . p 2 2
(ax) +(3y) = ¢ +GﬁlmfW (2-12)

together with the boundary condition:
w=20 on oD

which is exactly the same equation as (2. 8), with k2 now having the value

sinh(kp) (2.9)

For the rectangular plate, the 4 regions previously defined (figure 3)
have to be considered again; the optimal displacement w in each of them is again

given by the same expressions, k having the new value

L
“va %
In region (1), from (2.11), the optimal "thickness'" h* has to satisfy
the differential equation:
&

%[h* cosh(kx)] + k(h* + 5—2) sinh(kx) = 0 (2.13)
1

or:
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oh* 62
2= + 2k tanh(kx)h* + k = tanh(kx) = 0
ox 61

the general solution of which is:
5, @,

h*(X, Y) =- + 2
261 cosh™ (kx)

where Gl(y) is an arbifrary function of y.

Similarly, in region (2), the optimal “thickness" distribution is given by:

& @, (X)
h*(X, Y) =- 2 + 2

25 1 coshz(ky)

Now, as before, h* %n! has to be continuous across the line y =x, which

leads to the condition
h*¥=0
on the segment y=x, 0 <x=<b/2.
The expression for h* in region (3) will be obtained from that in region

(1) by changing x into a-x; for region (4), from that in (2), y being replaced
by b-y. The continuify of the shear from (2) to (4) when we cross the segment

y=b/2, Db/2sx<a-b/2

necessitates:
h* W = h* %V_" i
2) Yl
or, as:
(2) 4)
on that line,
h*=0 on y=b/2, b/2=<x<a-b/2. (2.14)
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Thus h* has to be zero on the lines serving to define the 4 regions
which are not boundary lines (dotted tines in fig. 3).

Applying this condition, we find the expressions for the undetermined
functions 61 and 62; due to the condition (2. 14), region (2) has to be subdivided
into (2) and (2') by the lines x=b/2, x = a-b/2 as shown in fig. 4. In the same
fashion, those lines divide (4) into (4) and (4').

The optimal "thickness distribution b* is:

5 r 2
in (1) he,y) = o | SRy
1 | eosh (kx)
s [ .2 B
in (2) bt y) = e | AR -1 (2.15)
1 cosh (ky) _J
5, F—coshz(kg) ]
in (2') h*(x,y) = 26 2 -1
_cosh &) ]

The expression for h* in (3) is obtained from that in (1) by changing x
into a-x; in (4) and (4') respectively by that in (2) and (2') by changing y into
b-y. We note that h* is nowhere negative, as it should.

This corresponds to the actual thickness distribution:

s [ g ]
in (1) hx,y) = -2 |1+ 2222 ()
cosh (kx)_l
s | 2 |
in (2F h(z,y) = 33 1+ %@ (2. 16)
cosh (ky) |
62 i coshz(kg)
in (2') h(X,Y)=—2— Y
cosh (ky)

the expressions in regions (3), (4), (4') being derived as above.
The contour lines (lines of- constant thickness) corresponding fo the case

where 40% of the mass is initially structural and thus allowed to vary are
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1 w=fk—° sinh [k(b—y)]
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Figure 4. Subdivision of the rectangular plate into regions where the

optimal thickness has different analytical expressions.
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represented in figs. 5 and 6 respectively for a square plate (a/b = 1) and for a
rectangular plate for which the ratio of the larger side to the smaller one is

equal to 1.5 (a/b=38/2). We note that the optimal thickness distribution attains
its minimum of 0. 6 corresponding to h* = 0 along the lines already described

in fig. 3, and that a thickness of more than 1.7 times the original one is attained
at the four points which are the middle of the sides in the case of the square plate.

The optimal mass of the plate is given by the double integral:

M=p ffh(x,y)dxdy .
D

We compute it for one-fourth of the plate: due to the symmetry, the total

mass will be four times that result.

We obtain, after performing the double integration, the exact expression:

ab 2 . .2 b,  a-b .
M—pﬁz[2 +k2 sinh (kz) + ok sinh(kb)]

where:

- /9_ - f S S S “__\[ 2, .2
k wf G61 T 61(a2+b2) b 51(a+b)

This leads to an optimal mass ratio equal to:

_ 1 2ab . ,/ 2 .2
m——62 {:2+——————2 ) sinh oa 61(a+b)

w6 (@ +b)

+ a-b sinh z Vs 1(a2+b2)} (2.17)
ow \/61(a2+b2)

As could have been expected, this quantity only depends, regarding the

geometry, on the ratio a/b= A of the lengths of the two sides of the rectangular

plate, and In is rewritten as:
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8| =0.4
82= 0.6

- X

Figure 5. Optimal configuration of a square simply-supported shear

plate (the thickness of the reference plate is taken equal to unity).
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: £h=l.3

Figure 6. Optimal configuration of a rectangular simply-supported
shear plate (a/b =1 5).
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m = 52{%+L— sinh? = V5. %+ 1)

726 A2+ 1) 2A 1
1
A
+ 1 sinh % Ve 1(7t2+ 1) } (2.17)
2T \/ & 1(7¢2+ 1)

Let us now examine the extreme cases: when & 1™ 0, i.e., when all
the mass is non-structural and thus impossible to redesign, the optimal mass
ratio tends to the value 1, as it should, showing that the result of the optimization
process is the original plate itself, as can be seen by noting that in the vicinity

of 61=

T 8 (A +1)
sinh \/ (7\ +1) ~
sinh =— \’ (7\ +1) ~ — Yo (K +1)

On the other hand, for 6 1° 1 and 62 = 0 (case examined first when all
the mass is structural and allowed to vary), this ratio is equal to zero, due to the
fact that the optimal thickness distribution is then identical to zero throughout the

domain D.

For a square plate, a=Db thus A= 1, and the optimal mass ratio is then

equal to:

,6

1 1 2 1

m=25 {—+ sinh™ wy/ — } (2.17a)
21 2 TT261 2

For the shapes pictured in figs. 5 and 6, the mass savings are found equal

to 14.3% and 15.9% respectively, which is an encouraging result if we consider
that 60% of the initial mass is not at the control of the designer.
When A goes to infinity, i.e., when one dimension of the plate becomes

extremely large compared to the other one, then the optimal mass ratio tends
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to the limit value:

N P i R)

6
21'r1

which is identical with the optimal mass ratio found for the minimum-mass design
of the one-dimensional cantilever wing for fixed torsional frequency14. The
analogy between that problem and our shear plate one is by the way worth noting.

Also, for a fixed value of 6 1’ the mass ratio first decreases when the
ratio a/b increases, reaches a minimum and increases again to the value mm
when 6 | goes to infinity. This variation of m with A fora 6 1 of 0.3 is plotted
in fig. 7. The asymptote is the straight line n = 0.901663, and the maximum
mass saving is obtained in that case for a/b = 3.42. The value of the mass ratio
is then 0. 88621, corresponding to a saving of 11.4% as compared to a saving less
than 9% for a square plate made of the same material.

The variation of the mass ratio {n with the proportion 6 _ of structural

1
mass is represented in fig. 8 for different values of the ratio a/b.

2.3 Application to the Circular Plate

We now turn our attention to the optimization of a circular simply-supported
shear plate. The optimal thickness distribution being assumed to be rotation-
invariant, i.e., its expression in polar coordinates to be independent of 6, the
problem might also, as pointed out in the introduction, be viewed as a one-
dimensional one, and solved using the classical methods of optimal control theory,
which will provide two ways of finding the solution.

In polar coordinates (r,6), an axisymmetric optimal solution h""r has to

satisfy (2. 2) rewritten as:

T‘where the superscript (*) has the same significance than before, the actual thick-

. — * s =
ness being h 61h +62, with 151+62 1.
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OPTIMAL MASS RATIO

0.9I

0.905}
0.90 ASYMPTOTE: M =0901663
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MINMUM=0.8862]
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0.885, 2 3 a 5 3 7 8 ) 10
a’b

Figure 7. Variation of the optimal mass ratio with a/b for a given

value of 61(61 = 0. 3).
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Figure 8. Variation of the optimal mass ratio with 61 for different

values of the ratio a/b.
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5
(h*w')' + %h*w' + kz(h* + 6_2) w=0 (2.18)
1
where (') denotes the derivative taken with respect to r.
With the value of the optimal displacement given by (2.9) where p is
taken equal to a-r,

€C

w= X sinh[k(a-r)] (2.19)

the optimal virtual thickness h* has to satisfy the ordinary differential equation:

6

h* + (% - 2k tanh[k(a-1)]) h* - k 6—2 tanh[k(a-r)] = 0 (2.20)
1

For the same reasons than for the rectangular plate (continuity of the
shear), theoptimal virtual thickness h* has to vanish at the center of the plate.

The solution is thus found to be, after some manipulation:

5
2 sinh(2ka) - sinh[2k(a-r)] - 2kr cosh[2k(a-r)]
h* = = > (2.21)
1 8kr cosh [k(a-r)]
and the optimal thickness distribution is given by:
1 1 i -~ 8i -
hes, (EJ" . , sinh(2ka) s21nh[2k(a r)]} 2. 22)
4 cosh [k(a-r)] 8kr cosh [k(a-r)]

We recall that:

Vsl
= .95 = 0 —_—
k mf G°1 2.4048 a

The optimal mass ratio is then equal to:
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and, after some easy integrations, found to be:

) 1 2
m = 2 @+ sinh !ka!) (2. 23)
2 k2a2

As expected, the ratio is equal to zero when all the mass is structural
(6 1= 1), and tends to the value 1 when all the mass is non-structural (5 1= 0),
and therefore not at the control of the designer.

A diametral cross-section of the optimal plate corresponding to the case
where 60% of the mass is non-structural is represented in fig. 9. The mass
saving then obtained is equal to 8. 6%. The variation of the optimal mass ratio
with the proportion 6 1 of structural mass in the reference structure is plotted
in fig. 10: note that the savings obtained for a circular plate are slightly less
important than those obtained in the case of a rectangular plate, as can be seen
by comparison of the curves represented in fig. 7 to the one of this figure.

To solve the same problem as a direct application of the methods of

optimal control theory, we have to minimize the mass:

a
M = anf hrdr
0

or, which is equivalent, the definite integral:

a
J= f hrdr (2. 24)
0

The constraint is given by equation (2. 11) rewritten for the case of axi-

symmetric vibrations, using polar coordinates, as:

(h*w')' +%h*w' +-§w?(61h*+62)w=0 (2. 25)

(') denoting as before the derivative with respect to r, together with the boundary

condition:
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Figure 10. Variation of the optimal mass ratio with the proportion of
structural mass 61 for a simply-supported circular shear

plate.
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w(a) =0

We introduce the auxiliary variable:

s = h*r

and rewrite (2. 25) as:

L)

(sw')'+k2(s+—2r)w=0
)

1
w(a) =0
where:
2 _p 2. _ 2.40482
k' =geg®1=C5 ) 8

Introducing another auxiliary variable t by the means of:

t=sw',

we rewrite the optimization problem as:

Minimize:
a
d= f sdr
0

subject to the differential constraints:

w =

w |

5
{ = -k%(s + == r)w
8,

and the boundary conditions

(2. 26)

(2. 24)
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w(a)=10

t(0)= o7

The Hamiltonian is formed:
9 5

t 2
=s+A —- A + —r)w
H=g¢g k 1:(s 3 r)

and the necessary conditions for a minimum are given by:

)

Al = kz}\ (S -+ —‘2']'.')
w t 6
1

A

w
Al = — .
+ S (2.27)

At

W 2
l-—-kAw=0
> k tw ,

s

the last equation being the control equation.

The natural boundary conditions are:

A (0)=0

it
(=]

Kt(a)

A solution to the problem appears to be such that:

o being a proportionality constant, assumption compatible with the original

1.The second of the conditions results from the fact that s(0) = 0 imposes the

vanishing of t for r = 0.

66



boundary conditions. The control equation is then rewritten as:

a——2+kw =0 (2. 28)
or:
2 2
w =gtk w2
which shows that o has to be positive: let
a=2c
(2. 28) is written as:

dw

dr =€

2
cz+ kzw

or, integrating:

r—r0 =I<€_ Log(kw + \/cz+ k2w2 )

which is also:

m

C

w = ? sinh[k(r—ro)] (2. 29)

and, due to the condition w(a) = 0, the optimal displacement mode is finally

given by:
w = %C sinh[k(a-r)] (2. 30)

which is exactly the expression of the solution found to the two~dimensional
problem, as rewritten for the case of axisymmetrical vibrations in polar
coordinates (equation (2.19)). The problem of finding the optimal thickness
distribution from now on is the same as treated above.

The solutions to the optimal problem obtained from two different methods

—— satisfying the necessary conditions for optimality in the classical one-
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dimensional case and in the two-dimensional one, as derived in part A — are
therefore the same when the two-dimensional domain can be in fact reduced

to a one-dimensional one in an image-space as it is the case for the axisymmetric
vibrations of a circular plate, therefore proving the validity of the optimality

process in two-dimensions for this particular case.

3. Simply-Supported Rectangular Shear Plate with a Minimum-Thickness

Constraint

As we have previously seen, the optimal thickness distribution in the case
of a rectangular plate is found such that the virtual thickness h* vanishes along
the segments constituted by portions of the bisectors of the four corner right
angles and of the line joining their points of intersection, as represented in fig. 6.
This has as a consequence the instability of the structure, and a plate built
following this theoretical distribution would immediately collapse if simply -
supported. The same situation arises for a square plate, which is a particular
case of the above for which h* is zero along the two diagonals.

It is therefore very desirable to impose a constraint on the virtual thick-
ness h*; imposing h* to be at least equal to h; is of course equivalent to
impose a minimum actual thickness h0 =9 lh; + 62

The optimization problem is the same as before:

Minimize the surface integral:

ffh*(x,y)dxdy (3.1)
D

subject to the constraint:

0 ow o 2
* 2 S (hx 2 5 h* +6 =
—h ) + (h )+wa( h* + )w 0
w=20 on oD (3.2)

with the additional inequality constraint on the control variable:
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h* - h* 20 (3.3)
[0}

(3.2) is broken down into a system of the form (A.1.1). Following the
method derived in (A.3), we form the augmented Hamiltonian:

Z Z

2
—h* A 242 A 2
H=h*+2) 1t AU ¥ A0 0y x T oy

- gl + g w?(zs b 48 )z, ] +E (h*-h%) (3. 4)
where:
Ex,y) <0 if h*=h;
£(x,y) =0 if h* 2 h* (3. 5)

The necessary conditions for an extremal are expressed by the system of

partial differential equations:

1 %
ox *
821_2_3-
dy T hx
8z2_
X —ul
y 2
oz
_3_u
ox 3
oz

(continued)
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§l+§—_gw?(61h*+62)“3
ox 8y  h*
Py, M
ox ay h*
Az by Z
1- hl*zz B hl*z3 _-C%w?ﬁl“ﬁzl *6=0
Ay =g =0
by =0
Ay =0 (3.6)

AgB' (0) — py0r (0) =0 (3. 62)
AgB'(0) - pga’ (0) = 0

on 0D, which reduce to:

zl=0

A::
g “ug =0

(continued)
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o being a proportionality constant. The control equation reduces to, going back

to the original notations:

2

ow,.2  ow?2 2. 2
() *+loy) =@+ Gugd W +E(x.) (3.7)

At every point of the domain D where h* is greater than h;,
E(x,y)=0

and (3.7) reduces to:

The solution to this equation was found to be:

w= EEC“ sinh(k p) (3.8)
where:
- yel
k wf G 51

and the quantity p having been previously defined.

We now focus our attention onto the case of a rectangular plate with sides
of lengths a and b (a =b). For obvious reasons of symmetry, it is sufficient
to consider the portion of the plate which is the left half of the region previously
called (2).

Inside this portion, p is equalto y, and:

sinh(ky) (3. 8a)

71



The optimal virtual thickness is, as before:

6 -
2 w (X) 3.9)

h*(X, Y) = - + 2
261 cosh (ky)

where w is an arbitrary function to be determined.

Now in the regions where the minimum value permissible for h* is

attained, that is:

* = h*
h hO’

then equation (3. 2) reduces to:
2 p 2 o 2
VW+Gu)f (.51+h—*) w=0. (3.10)
0
This is an equation of the form (1.6), with:

6 A
- Je) _2
o mf\/G (61+h3) 3.11)

The general solution is, introduce the four constants of integration

Al’ A2, A3, A4:
w(x,y) = A1 sin Bx sin Yy +A2 sin gx cos vy + A3 cos PBx sin vy

+ A4 cos X cos Yy (3.12)

where:
2 2 2
BT +Y =a
The problem is now to find the shape of the curve A dividing (2) into two

regions with different properties: in the first one, which should be attached to the

bisector of the lower-left corner and to the line defined by
y=b/2, b/2<x<2a/2,

h* keeps the minimum permissible value h*; in the second one, closer to the
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side y = 0, the distribution of h* is as given by (3.9).

The shape of this dividing curve A can be imagined quite easily, with the
help of the shape of the lines of constant thickness already derived for the case
where there is no constraint on the thickness, and from previous experience in
one-dimensional cases14: A should consist of a curve starting off somewhere on
the lower side of (2) between the points x=0 and x = a/2, situated on the same
side of the line y = x, and prolongated by a nearly straight line parallel to the
x-axis after the point with abscissa b/2. In any case, in the corridor enclosing
the bisector y =x, the displacement w has to be symmetrical about the same

line, and this can happen if and only if:

B=v=

/@

To determine the exact shape of A, we note that w and its first
derivatives Ow/8x and 8w/dy have to be continuous across it.

A point (§,n) of A has to be such that:

sinh(kn) = a_ sin BE sin fn + az(sin BE cos Bn + cos BE sin pN)

1

+ a, cos BE cos Bn

0= a, cos BE sin pn +a,(cos BE cos pn - sin BE sin Pn)

-a, sin BE cos Bn

k cosh(kn) = a_ sin B cos fn - a2(sin Bt sin pn - cos BE cos Bn)

B 1
- a, cos BE sin Bn (3.13)
(the al, a2, replace the previous constants A1’A2’A 4 as the displacement

mode w is defined up to a constant multiplicative factor).
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The point 0 belongs to the domain in which w is given by (3.12). The

condition w = 0 at the corner 0 leads to:

By subtraction of the last two equations in (3. 13), we obtain:

a = k cosh(kn)
1 BsinBE-n) °

From the second equation,

4 = _ kcosh(kn)cos BE sin fin
2 Bsin B -n)cos B(E+n)

Replacing ay and a, by their values in the first equation (3.13), we

find the relation between £ and 7:

tanh(kn) = %:i_(?m% [sin B¢ - cos Bt tan B(E+n)] .

After some trigonometric manipulation, this equation turns out to be

solvable in §, yielding:

2
21 -1 2k sin_(Bn)
£ = 26 sin [sm(Zﬁn) = tanh(kn) ] (3-14)

where sin_1 is defined by:

1 Arcsinu + 2hw

sin u= 7 - Arcsinu + 2hm | h=0, +1,...

Arcsinu representing the principal determination of arcsinu, and where the proper
choice of the integer h has been made.

Recall that k and p are defined as:

_ L L L2 2
k=w\/G 81 ab \21t& TP

{continued)
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The curve A is thus defined by the equation:

x=§() .

Although we cannot do the inversion in an analytical form, its Cartesian

equation is, formally:

-1
y=nx=§ “(x).
We are now able to write down the expression for the thickness distribution

in region (2): it has to be continuous across Aj; thus, at every point (§,n) of

A

5 _
O mey
26, coshZ(kn)  °

where the unknown function © is defined as:

&
B (x) = (h; + ——2—) coshZ[kn ()] .
26

On the right of and below A, the optimal "“thickness' distribution is

given by:

6 6 2
h*(x,y) = '2?2 + (hs + 262 ) °°Sh2[k”(x)1 (3. 15)
1 14 cosh (ky)

(in region (2), the extension of this formula to the other regions being immediate),
and this corresponds to a true thickness distribution of:

)

8 2
cosh [kn(x)]
hx,y) = 52 + (6 by + ) 2L (3.16)

27 coshZ(ky)
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Of course, in the remaining part of domain (2), h keeps the constant

minimum value:

= *
h(x,y) 61h0 + 62 .

The distribution in the other 3 regions follows immediately from
symmetry.

We cannot here give an explicit expression for the optimal thickness
distribution, as the function m(x) cannot be put under any analytical form and
is only known implicitly.

Of course a computational approach is always possible: contours of
constant thickness have been represented in figures 11 and 12 respectively for the
case of a square plate and that of a rectangular plate for which the ratio of the
lengths of the sides is equal to 3/2, as in the previous unconstrained problem.
Again, the initial proportion of structural mass in the reference structure § 1
was taken equal to 0.4, which means that 60% of the mass is non-structural.
The constraint ha was taken equal to 0.5, representing an actual constraint of
0. 8 on the true thickness h.

In the case of the square plate, 84.4% of the plate surface is at the
minimum allowed thickness of 0.8. The mass saving then obtained is of 14.1%,
slightly inferior to the one obtained in the case where there was no minimum
constraint on the thickness.

For the rectangular plate (a/b = 3/2), the minimum allowed thickness is
reached on 77.6% of the total surface. The total mass is found to be of 0. 845
that of the original plate, corresponding to a saving of 15. 5% that compares well
with the 15.9% obtained when there was no constraint on the thickness.

When we compare the corresponding optimal shapes for the cases where
there is a minimal constraint on the thickness and the unconstrained ones, the
main feature that we notice is the augmentation of the area of the domain formed
by the reunion of the points where the thickness was inferior or equal to the
given constraint, together with the drastic diminution of the maximal thickness,

that was obtained at the four points middle of the sides in the case of the square
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plate, and at the two points middle of the larger sides in the case of the rectan-
gular shape. Physically, this is logical, as in the constrained case, the parts of
the plate where the thickness is above the imposed minimum have less to con-
tribute to the rigidity of the structure than in the unconstrained one, where they
have to compete with the effect of antagonistic hinges. This can also be viewed
in terms of the total potential energy for the first deflection mode of the plate,
which has to remain the same for a fixed natural mode, whether or not there is

a constraint on the thickness: the contribution of a large thickness at some points
of the plate has to balance that of hinges in the unconstrained case, whereas
everything gets smoother when a constraint on the thickness is imposed.

This feature (diminution of the maximum thickness attained and augmenta-
tion of the area where the thickness is inferior or equal to the given constraint
as soon as it is applied) is the exact extension to two-dimensions of properties
already recognized for the one-dimensional problems where a minimum con-
straint was imposed on the thickness14

For the practical design, these results are of extreme importance. The
shapes obtained when the thickness is subject to a minimal constraint are much
easier to realize in practice: the maximum thicknese attained in the domain
covered by the plate is much smaller than in the unconstrained case, most of
the surface of the plate is at this minimum imposed thickness, and there are
no hinges as before. Moreover, together with all these advantages, the striking
fact is that the mass saving is only slightly inferior than in the unconstrained
case.

. . . . . 14
Again, these properties were noticed also for one-dimensional cases
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PART C

THE MINIMUM-MASS DESIGN OF A SANDWICH PLATE FOR A GIVEN
FUNDAMENTAL FREQUENCY OF VIBRATION

A further step in the domain of applications to more realistic structures
is that of the optimization of plate-like structures encountered in practical design
for a given fundamental frequency of vibration. For a sandwich plate, the
necessary conditions lead, when the displacement along the edge is assumed to
vanish, to an optimality condition expressing the uniformity of the optimal
energy distribution in the form of a second order nonlinear partial differential
equation for the optimal displacement mode w that does not involve any design
parameters. The optimal thickness distribution is the solution of a second
order linear partial differential equation.

A numerical solution of these equations is presented for a square aluminum

alloy-aluminum honeycomb panel simply-supported along the edges.

1. Statement of the Optimization Problem

A sandwich plate is a composite plate consisting of a core layer of
thickness hO and of two face layers of thickness t. It is assumed that t is
small compared to hO and that the core material is much more flexible than the
face material. Under these assumptions the transverse shears are predominantly
taken by the core plate while the bending stresses are primarily taken by the face
plate (Fig. 13). We will take the elastic modulus in transverse direction of the
core-layer material, Gc, to be infinite.

The core material is generally extremely light, and despite the small
thickness of the face material, most of the weight is concentrated in the faces.
We will therefore act on the face layers with thickness t, and our goal will be
to find the optimal t distribution of the rectangular plate of minimum weight

having the same fundamental frequency of vibration as a uniform reference one.
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Figure 13, Infinitesimal element of sandwich plate, showing

dimensions and relevant components of stress.
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Under the small-deflection assumption, the equations of equilibrium for

El

a sandwich plate have been derived by Reissner3 7 who followed the classical
approach of combining the equilibrium equations and the stress-~strain relations,
and by Hofj:‘38 who used a variational approach. Assuming that the only external
action applied to the plate is the normal force of intensity q, the equilibrium

equation reads:

-2 Y, —Y - _g (1.1)

where Mx’ M are the bending moments per unit length of sections of the plate
perpendicular to the x and y axes respectively, Mxy the twisting moment
per unit length of sections perpendicular to the x axis, the signs being taken
according to the Timoshenko convention3

3
From the stress-strain relations 6,

2 2
Mx:_—D(a_E"' Va_VV)

2 2
ox oy
2
0w
M =D(1- =-M
Xy (v)axay yx
2 2
M = - (VB W+3W) (1.2)
y axz ayz

where the bending stiffness factor D is defined as:

t(h0+ t)2Es
D= ———2— (1.3)
2(1-v)

Ef being the elastic modulus of isotropic face-layer material, v the Poisson
ratio.
Substituting these expressions in the equation of equilibrium (1.1), we

obtain:
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&p o®w oD ofw D azw) _q

oxoy oxdy ox° oy’ oyl ox

V-'2(DV2W)+(1—V) (2 (1.4)

Under our hypothesis t << hO’ a very good approximation for D is:

2
hOEs

D=
2(1—v2)

t (1.5)

and (1.4) reduces to:

2
8%t oow_ D

2
sxoy oxdy ox° oy> By Ox

2

2 2 .2 2
9 ota 2(1-v
Low 2t w)= C¥)q (1.6

2 2

Vz(tvzw)+(1-v)( 2
h E
0 s

For a sandwich-plate of uniform face thickness tO and uniform core

thickness hO’ the differential equation for free vibration is (1. 6) where q is

replaced by the d' Alembert force —(hOpc+ tops)(azw/atz) and t is a constant

tO:
2 h p.*t.p 2
V4W=_2(21-1Q 0Pc” "0Ps azw (L.7)
t o
hO ES 0 t
P is the density of the core-layer material, Py that of the face-layer
material.

Denote by n and s the coordinates in the directions normal and
tangential to the boundary 0D. For a clamped edge, we have the geometric

boundary conditions:

[e¥]

w=0 and —VI—IV =0 along oD . (1.7a)

At a simply-supported edge, the boundary conditions are:
w =0 and Mn =0 along oD (1.7b)

where Mn is the bending moment per unit length associated with the cross-

section whose normal is n.
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In the case of a free edge, the boundary conditions are:

oM
ns
=0 d V = - =0 1 oD .
Mn an n Qn 3s along (1.7c)

where Vn denotes the vertical force, Q_ is the shearing force and Mns is

n
the twisting moment about the direction n. All three quantities Vn’ Qn and
MnS are for one unit length of boundary and are associated with the cross-section
whose normal is n.

The relation between the moments and shearing forces and deformations,

32
in terms of normal and tangential coordinates, are

2
2 1ow 9O w
Mn——DV w o+ (1—v)D(R on 352)

=
i

2
dw 1 ow
1- =N
ns ( V)D(anas Ras)

)
Qn_~D8nvw

where the Laplacian has the form:

o2 2,
T2

82
T2
on 9s

0 | =
cvlq:
[=]

and R denotes the radius of the boundary curve.

To formulate the eigenvalue problem, we let in the classical fashion the

displacement w be given by:
w(x,y;t) = W(x, y)i(t)

where W depends on the spatial coordinates only and f is a time-dependent

harmonic function of frequency w. (1.7) reduces to:

2 hp+tp
2(1- 2
V4W=% 2) Otc 07t 2w (1.8)
W E 0
0 s
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wboundary conditions are, depending on the situation at the edge, given by

one of the conditions (1. 7a), (1.7b) or (1.7c) where w has been replaced by W.

32,33

This eigenvalue problem is a classical one ; it is shown to be self-

adjoint, and yields an infinite sequence of eigenvalues, the smaller one being the

fundamental frequency of vibration w_ of the plate under the imposed boundary

f
conditions.
The variable face-layer thickness t of a rectangular plate having for one

of its natural frequencies of vibration w_, — that we can reasonably assume to

f
be also its fundamental frequency if the plate does not differ too drastically from
the uniform one — together with the corresponding mode w, have to satisfy

the partial differential equation:

2 2 2, .2 2 .2
2 ) 9 8t o 87t o
v2tv 2w+ (1-v) (2 t o w -—; . ; ‘2")
0X90y 0x0y 0x 0y dy 0ox
1 v2 2
—21—-——)(h pttplw,. w = 0. (1.9)
th 0%c ¥ f

0

If we introduce the non-dimensional face-layer thickness 1 = (t/ to), the

above equation reduces fo:

s‘

2 .2 2 2 2 2
8°r 2 2 3°r 3
v2r viw)+ (1-v) (2 87 8w 878w, —) _ B r W =0

2 2
6x9y 0x8y Ox Oy Oy Ox (1.10)

N
[\

2
where # and B are constants depending only on the material properties of the

reference structure, defined as:

K = — —= (1.11)

B =5 @ (1.12)
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We are now able to state the optimization problem: mininize the total

mass:

M= ff(pcho + pt)dD
D

or, equivalently, the functional:

szdeD (1.13)
D

taken over the domain D covered by the plate, subject to the partial differential

equation constraint:

2 .2 2 .2 2 .2
2 _2 9% B 3% 2 8%
VErviw)+(1-v) (2 I W TS W ; ;’) - B (r)w = 0

2.2
axdy ox 8 9
y X9y 0x Oy y  ox (1.10)

together with boundary conditions (1. 7a), (1.7b) or (1. 7c) along the portions of the
boundary 9D where the edge is respectively clamped, simply-supported or free.
For a rectangular plate with sides of length a and b, a=>b, the natural

frequencies of vibration are found to be:

[:(—) & :] \/ t° (1.14)
b 2(1-v%) PoPct toPy

m,n=1,2,3,...

The fundamental frequency is:

. = —n2(1—+l—) Yo% ‘o (L.15)
£ 2 2N 208 BPettols

2
and the value of 8 in equation (1.10) is, in that particular case:
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4 2
g2 =T (-1—+ 1—) (1.16)

= 1+k 2" 2
1+K a b

The following derivation of the necessary conditions will be valid for the
most general shape of the boundary 8D. For the applications, we will assume
the plate to be rectangular and will take the coordinate axes to coincide with two
of the sides, the origin being one of the corners of the plate. Only clamped and
simply-supported edges will be considered. The boundary conditions will be

picked among one of the following:

i. edges parallel to the x axis.
CLAMPED: w=0, ow/8y=0 along y=0,b

o w

SIMPLY-SUPPORTED: w=0, 7= =0 along y=0,b

oy
ii. edges parallel to the y axis:
CLAMPED: w=0, d8w/0x=0 along x=0, a

2
SIMPLY-SUPPORTED: w =0, 1 —8—;—"= 0 along x=0, a (1.10a)
X

2. The Necessary Conditions

The constraint (1. 10) is transformed into a set of first order partial
differential equations in the form (A.:1.1) following step by step the general

2
method outlined in Part A. 8 7/6x8y is computed from (1.10), leading to the

system:
Z1 =W
iz_1= z - aw,
ox  °2 G x

(continued)
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azz_z
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ox 7
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ox 9
0z
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oz
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sk
oy 2
& 2
oy 3
x 3
9
oy 4
8210 .
ox 4
azlozu
gy 5
t1=r
%,
x 2
L,
ay 3
%,
ox 1
ot

2 2
—_— + -
oy g (tl fc)zl 1:l(u1+2u3

+u5)-2t2(z7+ zg)—2t3(z8+ zlo)-vl(z4+ vz6)

(continued)
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9T
~V,(25+ vz, )]/ 2(1-)z, = a5
3E3— = ~a—t2— - _a_z.T_. )
ox oy ox8y
E.t_3.. = v (— .6_2.7_.. 1\
= = )
oy 3 8y2 (2.1)

The boundary conditions, in the case of a rectangular boundary and simply-

supported edges read:

it

z.=0, 2z =0 along x=0, a

z.=0, z,=0 along y=0,Db (2.12a)

We now form the Hamiltonian:

A
Az +A Az +Aw A
HE ) + Azt Aoz Azt A Byt Azt AeZg b AWy +Aguo+ Agu kA gy + A b

FA gV T Zg g Bet BaZat i Bt Zg it Zy (HE U L U gT L U
i1t tHsYs Yo Wz,

-+
Mathig [ o
+ {B (t1+fc)zl—tl(u1+2u3+u5)—2t2(z7+zg)

—2t3(z8+ zlo)—vl(z4+ sz)—v3(26+ vz4)} (2. 2)

The necessary conditions read:

A A

a1+a”1=_aﬂ= 137 19 24 410

x| oy 9z 2(1-vz. P .
1 5

A

32+8”2=_3H=_>\

| oy bz, 1

(continued)
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ou. =gt Hg=0

2

A

oH _, Bt
6u3 9 8 (l—v)z5
5H _ _

4

A

oM _ b1 Mstee)
au, = M10 7 2(1-ve,
oH Mg TP
v, =Mo" B, etV =0

1 5
oH Mgt e
Z = - + =0 .
ov, P13 2(1-1z, (Zg+ vZ,) (2.3)

For a rectangular simply-supported plate, the boundary conditions read:

=A =A = =A =A =A =A =X =A =A =A =A =
R R Bl R Sl St e e e T R PRk PR PRl

N

along x=0, a
ZyThy TR TR SR T 2 TRy SR Ty SRy Ty TRy =Py =0
along y=0, b (2.32)

We therefore have to solve a system of 46 equations in the 46 unknowns
z,4,t,7, A and p, which is a formidable task if we consider that the majority of
the equations composing it are partial differential equations. A logical and simple
assumption, in the line of the one made for the shear plate problem (see
Appendix 1),will however yield a simple partial differential equation to be satisfied
by the optimal displacement mode w. We verified that this assumption was indeed

valid in the shear plate case, and similar ones also have proven to be valid in
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1
one-dimensional cases. 4 We will come back to this assumption in length in
Part E.
The top equation of (2.3) is similar in form to the original constraint

equation (1.10) which might be written under the form:

with

g
!
4 b

[~ 2 2 2
t(il;’..,. v a—"zl)] + -a—[(l-v)t ngav ]

2
3 aw dw
Q= — (1-v)t J —-+ v——)]
ox 2 2

This leads us to assume

1
=5 {tl(z7+ z9)+t2(z4+ vz6)+(1—v)t3z5}

oQT =" 1{ (2g* 2 )t (A-v)tZ tEg(zgt v )}

A +|J, A
137 M2 "1

2(1—v)z5 o

7\1=

R|d

Wy

(2. 5)

where « is a proportionality constant. Under this assumption, compatible with

the boundary conditions when zy is prescribed to vanish along the edge,

. . zl(z4+vz6)
12 o
B zl(z6+ vz4)
M= T Ty (2.6)

The three equations above (the control equations) are rewritten as:
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This relation simplifies into:

2 2 2 2 2
+z +9(1- =q +
z, +2vz4:z6 Zg 2(1 v)z5 a+p Zy
or, in terms of the sole variable w:
. 2 2 2
2 2 2 2 2
0 2
(&) -2ty & (2 0} s 2o (28] cae g
ox ox oy oy 9xay
that we might rewrite as:
2
2 2 2
(VZW)2 + 2(1-v) [( 9 w ) - 9 ‘;’ l ‘ZVJ =@ +(32w2 (2.10)
oxdy ox 9oy

The expression on the left hand side is, up to a constant multiplicative
factor, the potential energy of deformation density of the sandwich plate, which
is identical to the one given in Ref. 33 for an elastic plate with constant thickness.
This potential density might also be expressed very simply as a symmetric
quadratic form of the principal radii of curvature P and p2 of the deformed
plate, and more precisely in terms of the so-called mean and total curvatures
(ref. 33, p. 250). For a sandwich plate with varying thickness such as the one
we consider for which the bending rigidity is simply proportional to the thickness
t, the potential energy density is independent of t. This is actually not the case
for a classical elastic plate with varying thickness h: as we will see in the next
chapter, where the potential energy density will be encountered again, it is
then a function of h, and more precisely is proportional {o the square of the
varying thickness.

Actually, (2.10) states for the sandwich plate an extremely general
optimality principle encountered in a very broad class of structural optimization
problems: for a given fundamental frequency of vibration, (2.10) expresses the
conservation of the difference between the potential energy and kinetic energy
densities. We will come back in Part E to this extremely important feature,

which is a necessary and sufficient condition for an extremal.
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If we rewrite the left hand side as:

2 2 2 2 |2 2
(3_;1 +v a_va) +(1—vz)(‘212’) + 2(1-v)(—gx:;'y)
ax ay 8y

we see that it cannot be negative, the Poisson ratio v of the given material

2

having to be comprised between the extreme values 0 and 1/2. On the boundary
oD, w = 0, and the above expression takes, from (2.10), the value «@: this shows

that o is actually a positive quantity; let:

If w is a solution of:

2 2 \2 2 2
(VZw) + 2(1-v) [(a ¥ ) _2 "; 2 “2’] =1 +Fw (2.11)
ox 3y NE

then ecw is a solution of (2.10). As the displacement mode is known up to a
multiplicative constant factor only, and if we recall that ¢ was any multiplicative
constant, it is sufficient for our purpose to consider (2.11). The latter is a very
interesting looking nonlinear partial differential equation of the second order in
the dependent variable w, much simpler than what we might have expected from
an original system of 46 equations. It is also very general in that it has to be
satisfied inside a domain D of any shape, the constant 62 being determined

from the uniform plate, according to (1.12). For a rectangular domain,

2

4

2 T 1 1

g = Yy ( 2+ 2) (1.16)
a b

The different boundary conditions corresponding to different supports (clamped
or simply-supported edges) are to be chosen among (1. 10a).
Once the optimal displacement mode is found from (2. 11), the optimal

thickness distribution is given by the original constraint equation:
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2 2 2 2 2 2
el ) T 0 dr dw) 2

T v 72' ‘2”_ g 2)-ﬁ (r+e)w=20
ox0y Oxdy Ox Oy gy ox (1.10)

Vz('r V2w)+(1-v) ( 2

3. A Numerical Application

Equation (2.11) which gives the optimal displacement mode is, as
already mentioned, a second order nonlinear partial differential equation.
It is unfortunate but true that equations of this type have generated
practically no interest among mathematicians in our century. The main
reason, as quoted from Ames39 seems that nearly no physical situations
within the scope of mathematical formulation yields equations of the afore-
mentioned type to be solved as steps towards the solution. It is hoped that
optimization problems making use of variational techniques will give a new
life to the whole subject: the constraint equation which we started from
was a fourth order one, linear in w, whereas the optimality condition
(2.11) is a second order nonlinear one. Similarly, for the shear plate,
the constraint was a second order partial differential equation linear in
w, vyielding an optimality condition in the form of a first order nonlinear
equation. The characteristic features common to such problems seem
that, whereas the constraint is linear, because based on a previous
linearization of the system under investigation, the optimality criterion
yields a nonlinear equation of order reduced by half. For sandwich struc-
tures, we are always led to an equation involving the optimal displacement
mode onlyu: it will be nonlinear of the second order if the original con-
straint is of the fourth order, as is extremely common in the theory of
elasticity.

This present disinterest in nonlinear second order partial dif-
ferential equations is the more curious because extremely interesting studies
of the subject have been made at the end of the XVIIIth and beginning of

the XIXth century by some famous mathematicians. In those earlier days,
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the goal was then to find a general solution to the partial differential equation,
and to impose the boundary conditions to determine the unknown functions or
constants appearing in the expression of the general solution. This method of
course does not apply to every case, but is worth of more efforts on the part of
researchers confronted with a first or second order nonlinear partial differential
equation. It worked in the case of equation (B. 2. 8) for the most general shape
of the boundary.

The author wishes to express his gratitude to Ames for referencing in a
modern Work39 the admirable work by Forsyth, first published in 1890 and
reprinted by Dover in 195540, which is a monumental tribute to the theory of
differential equations and bears most of the knowledge in this field up to the
beginning of the XXth century. In there were we able to find a mention of the
original work of Ampere and in particular the exact reference of his two funda—

2

mental coni:ribu’t:ions4 which led us to the discovery of an exact solution of
equation (2. 11) when the boundary of the plate is an ellipse. However, we have
been unable yet to find an exact solution of this equation for a rectangular
boundary: the solution cannot in this case be simply a function of the distance to
the boundary as it was for equation (B. 2. 8), due to requirements of continuity
for the bending slope 6, the bending moment Mn and the shear Vn along the
lines loci of the points from which two different normals with equal length can be
drawn to the contour, requirements which cannot be met under such an assumption.
A numerical solution at this stage of research seems the most profitable
thing to do, as it also will help orienting future investigations of equation (2. 11),
The reference sandwich plate under consideration will be constructed as
follows:* the face material is constituted of 7075-T6 aluminum alloy, which has a

Young's modulus of 10. 4x 106 psi, a Poisson ratio of 0.33 (l—v2 = 0.89) and a

density Ps of 0.1007 1b/in3. Its thickness is to = 0.012 in. The core is made

*The author wishes to express his gratitude to Professor Jean Mayers and
Professor Richard Shevell for their help in getting the above data.
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of 3/16-5052 H39-0015 P hexagonal aluminum honeycomb alloy, with a density
Py of 0.00254 1b/in3, and its thickness is h0 = 0.3 in.
For a simply-supported square plate with sides of length a = 10 inches,

the fundamental frequency of vibration is given by

W, =

f

o’ [(0.3)% x 10.4 x 10° 0. 012 A
: == X : = 353 cps

102 2x0.89 0. 3x0. 00254 +0. 012x 0. 1007

The values of the parameter k is

.. 0.00254
k =26 § o = 0.632

and Bz is given by:

The numerical problem is now reduced to solving simultaneously the partial

differential equations

2 2

2
(Vi) +1.34(w> -w_w_)=1+0. 0239w (3.1)
Xy XX VY

2 2
V(rV w)+0.6721. W -T. W =T W_)-0.0239(7+0.632)w =20
Xy Xy XX YV VY XX 3.2)

in the square domain limited by the straight lines x= 0,10 and y = 0,10 under

the boundary conditions (simply-supported edges):
w =0, Tw__ =0 along x=0,10 (3. 1a)

w =0, Tw__ =0 along y=0,10 (3. 2a)
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For the computation, 49 x 49 = 2401 interior mesh points were considered,
therefore breaking the domain into 2500 small squares with side length of 0. 2.
The initial start for w was taken to be either w =0 or w = sin 'rlr_% sin -Tl%, the
displacement mode for the original uniform plate. The solution was found from
(3. 1) after the same number of iterations, 10, using a regular relaxation method.
The contour lines for the optimal displacement mode w are drawn in Fig. 14
(interval taken egqual to 0.2). The maximum of w is attained at the center of
the plate, and its value is equal to 1.23. This pattern is also shown by the
computer printout reproduced in Fig. 15. The letters A, B,C,... correspond
to points with a w in the respective ranges 0.1 + 0.015, 0.2 0. 015
0.3 +0.015,. ..

The above values for w are then used in (3. 2) which is now a second
order linear partial differential equation for the optimal nondimensional thickness
T.

Two initial guesses for r were taken, respectively, to be

- L TX LTy - . TX Ty
r=1.2 sin To 5 1o and r=1.5 |s1n5 sm5|

Both vanish along the edges, as should do the optimal thickness, because neither
W DOT W are zero along those edges. The convergence was in that case very
slow, and the solution was found after 150 iterations. At that stage, the sum of the
squares of the differences between the values of r during two successive iterations,
sum taken over the 2401 mesh points, was only 0. 08736, thus securing the validity
of the solution. Contour lines are represented in Fig. 16, while a computer
printout of the optimal configuration, under those same rules governing the
representation of w, is reproducedinfig, 17. The optimal thickness distribu-
tion along a median axis of symmetry and along a diagonal of the plate are
plotted infigs. 18and 19, respectively. The mass of the optimal face layers is
69. 8% that of the original uniform ones, and this corresponds to a total mass
saving of 18.5% for the sandwich plate.

A computer program written in the FORTRAN H language to solve the
system (3. 1), (3.2), using double precision, is presented in Appendix 3.
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7 vanishes only along the edges, which does not prove to be practically
inconvenient, as was the optimal shear plate. Also, its maximum is 1.47, which
is quite reasonable. However, one might be interested in imposing a minimum
thickness constraint as an extra inequality constraint. The application of the
general method outlined in Part A is straightforward, and the above procedure
may be used with only slight modifications. Due to limitations in computer time,
numerical computation was not carried out, but it is a simple exercise for the
mind to imagine how the optimal thickness distribution will look like when an

inequality constraint is applied.
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Figure 14. Contour lines for the optimal displacement mode w-square
2
simply-supported sandwich plate (the constant ¢ has been

set equal to 1),
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Figure 15. Computer printout for the optimal displacement mode.

Letters A,B, C,... correspond to points in the range

0.1 +0.015, 0.2 £0.015, 0.3 £ 0.015,....
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10

Figure 16. Contour lines for the optimal thickness distribution —

square simply-supported sandwich plate.
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0.8—

Figure 18. The optimal thickness distribution along a cross-section

following a median axis of symmetry.
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Figure 19. The optimal thickness distribution along a cross-section

following a diagonal axis of symmetry.
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PART D

THE MINIMUM-MASS DESIGN OF AN ELASTIC PLATE FOR A GIVEN
FUNDAMENTAL FREQUENCY OF VIBRATION

Derivation of the necessary conditions leads for vanishing displacements
along the boundary to an optimality criterion expressing again the conservation of
the Lagrangian density. It differs from the conditions previously encountered
for sandwich structures in the fact that the design parameter h, thickness of
the plate, is present. The optimal displacement mode and the optimal thickness
distribution are therefore found to be the solutions of a system of two simultaneous
nonlinear partial differential equations. Only a numerical approach seems

possible in that case.

1. Statement of the Optimization Problem

The differential equation of equilibrium for a plate of variable thickness
h can be found in the classical textbook by Timoshenko,43 pp. 173-174 or in a

44
paper by Reissner ~. In rectangular coordinates (x,y) in the plane of the plate,

it reads:
2 2 2
2 2 aD 9 8 D o
v DV w)+(1—v)(2 ¢ ¥ - ——"—"—?———g) =q (1.1)
oxdy oxdy ox oy Oy ox
in which

w denotes the lateral deflection

3
D= —Eh the flexural rigidity

12(1-v )
v the Poisson's ratio and,

g the intensity of the acting load.
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The free vibration of such a plate is governed by equation (1. 1) in which

q is replaced by the d' Alembert force
q = —-ph &L (1.2)

p being the density of the material, assumed to be homogeneous, of which the
plate is made: p is therefore a constant.
The free vibrations of the uniform reference plate made of the same

material and of constant thickness h 0 are governed by the equation

2
o
D, viw = -ph,, ——2"1
ot
where
Eh3
D = 0
0 12(1-v2)

For a simply-supported rectangular plate extending over a domain D
defined by 0<x<a and 0<y<b, the natural frequencies of the system are

found to be

(1.3)

1zp(‘1-u2)
The corresponding natural modes are
_ . mmxX . nny
Wmn(x,y) = Amn sin sin b (1.4)
The fundamental frequency of vibration is
2
wW.=Ww — -n-z L + 1—. E—llo_. 1 5
£ 11 2 2 (1-9)

a- b 120 (1-v?)
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The variable thickness h of a plate occupying a domain D and having
the same fundamental frequency of vibration W than the uniform one made of
the same material and occupying the same plane domain D under the same
boundary conditions, together with the corresponding mode w, have to satisfy

the partial differential equation:

v2(Dv 2w+ (1-v) (2 2’D o' _ 32]23 82‘; - 82? 32;’) -phwfw =0
9xdy oxdy ox 8y 8y ox (1. 6)
For a simply-supported rectangular plate, the value of we is given by
(1.5).
The constraint equation (1. 6) may be rewritten in terms of h and w
only, as

8
h V w + 6h[:— —(V w) h (V )]
2 2 2
+3 ah W, LAWY o4y z%@ﬂlah .
2 8x2 2 ox 9y dxdy 8x8y

oy
2
sn\2  o%n | [o%w . 9w 12(1-%) 2
+2l =) +h— | — +v— - S pulw=0 (1.7)
ay 2 2 2 E f
ay oy ox
or, as an alternative way, in terms of D and w only as
2 2 2 2 2 2
2 oD o 0 9 oDoD 2_1/3
v2(Dv 2w+ (1-v) (2— —&-—2 ——‘;’-—-2——2—) -B°D =0

oxdy 0Xd ) e)
y y ox 0y y X (1. 8)

2
where the positive constant  is defined as:

9 1/3
2 |120- 2
62 - [ E" )] p oy (1.9)

Our goal is to minimize the total mass of the plate, given by the surface

intergral:
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M = {)fphdxdy (1.10)

and the optimization problem may be stated as follows:

Minimize the functional

J = ffhdxdy (1.11)
D

subject to the constraint (1.7), or, alternatively,

Minimize the functional

K = ffD1/3dxdy (1.12)
D

subject to the constraint (1. 8).

The boundary conditions can be expressed for the more general domain
D in terms of the coordinates n and s in the directions normal and tangential
to the boundary respec’cively:32

At a simply-supported edge,

w=20

2
1 ow BW)=0

2
_ _ L ow 27
DV w + (1 V)D(R on asz

For a clamped edge,
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In the case of a free edge,

2
1 9 9
_DVZW +(1_v)D(§ —3‘1: + -——asg) =0

)

&l

2
5 ._2 9 pw 1
Doa (V W=V 53 [D( onds ~ R

where the Laplacian has the form

2 2
I S
on R on 3s

and R denotes the radius of curvature of the boundary curve 09D.

For a simply-supported rectangular plate, the boundary conditions read:

0
w=0 and DX=9 along x=0,a
ox
2
0w
w=20 and D—2-=0 along y=0,b (1. 8a)
oy

ow
w=20 and o 0 along x=0,a
ow
w=0 and 5; =0 along y=20,b (1. 8b)
2. The Necessary Conditions

We will concentrate on the optimization problem under the second

formulation, where we wish to minimize the surface integral
1/3
K=j:[D/ dxdy 2.1
D
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subject to the constraint (1. 8), rewritten as:

4 8D 9 2 8D 8 2
— —— + — —
DV'w +2 3= = (VW) zay ay(Vw)
+ 82D/ 82w + Vv azw) + 2(1-v) aZD 82W + BZD (azw + v ﬁ)
o3 \ oxc2 ayz 9x9y 9xdy ayz ay2 ox
2 1
-pD/3w=0 (2.2)

In a similar fashion to that which was done in Part C, we break (2. 2) into

a system of first order partial differential equations as follows:

Z; =W
%, _w
ox 2 = o
az_l_z _ow
dy 3 oy
" o P,
ox 4 2
% ox
a_zg_z (_azw)
dy 5 ~ 9xdy
ox 5 ~ axdy
s _ . - &w,
9y 6 L2
y 9y
3
—-z-fl-—z _ff_w_
ax 7 =3
ox

(continued)
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0
4, RN
oy 8 ax“ay
8z5 - 83w )
ox 8 9x29y
oz 83w
5_, A
9y 9 oxoy
0z 83w
Ze_, )
ox 9 9xdy
oz 83w
6 _, A
oy 10 oy
4
827 - 5w
—=u -
ox 1 9%
9z 84w
1y -3
o 2 ax° 0y
oz 84w
8 _ u =3 )
ox 2 ox 9y
0z 84w
%y 3 ox 9y
9z 84w
x 3 ox” 0y
4
?_i?_ =u (= 0w )
oy 4 ox0y

(continued)



10 a _9w )
ox 4 oxdy
8ZlO —u (= 84w
oy 5 ay4
aD
ax D2
oD
==D
oy 3
iD—z =V (= az_D
ox 1 8x2
oD

2 2 _1/3
—_— = - + - + —-
3y [ D z; D(u1 2u3+u5) 2D2(z,7 Zg) 2D3(z8+zlo)

+v +v /2(1-v)]z —azD)
V(2 VR Va(Zg T VE )/ 2(1-V) L 2g ~ axdy
8D3 ) 8D2
ox 9y
iy i
oy 3 ay> (2.3)

In the case of a rectangular boundary with simply-supported edges, the

boundary conditions read

z. =0, z =0 along x=0,a

z. =0, z,.=0 along y=0,b (2.3a)

We form the Hamiltonian:
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A 1/3

H

D +AzZ +Az +Az +7\4z7+7\ Z +>\6z9+7\7u1+k u+Au +A u

1%2 T M9%y T 5% 528 g%t Mol M o%e
A +
FA Dot AoV TR By T o Be T e Zet 2T s Bg T eZ ) o F Uyt gl T kgl

+ +
ByoYst Hy1Pg T H3Vs

A
. 13" M1 { 2 1/3

- + - -
a1z, |\ P D PP TR T Dy 2g) 2D (g T 2y )

—Vl(z4+ VZ6)—V3(26+ VZ4)} (2.4)

The necessary conditions are:

oA 0 A+
i oM em . T137Me 62pl/3
ox Oy azl .2(1-1,-)z5
ox oy oz, |

A
s O3 em
ox oy oz, Ky

A A
Do, M Tt
ox oy oz, 2" 2(1-v) 1 VVs
oA oy +u

5 5 oH 13 "12 [ 2_1/3
— = = . A, * D" "z -D(u,+2u_+u_)
P

X 3y 8z5 3 "2 2(1—v)z2 { 1 3

5
-2D - - -~
2 2(z7+z9) 2D3(z8+zlo) vl(z4+ vz6) V3(Z6+ vz4)}

A A
M M6 om _ 13" M2 )
ox oy oz, by ¥ Si-mzs (3T VV1

A A
e e B SN F e T
ox ay 8z7 4 (l—v)z5 2

(continued)
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For a rectangular simply-supported plate, the boundary conditions read:

=A =z =A =A =\ _=A =A =
2y =Rom AT E PR AT 0T 1M 9 T O

along x=0,a
R ul e B T R T DL T Sl

along y=0,b (2. 52)

As in the sandwich plate problem of Part C, we note that the first

necessary condition

A
81 o

A
M 3™ 213
x oy | 2wz,

B D

is very similar in appearance to equation (2.2), rewritten as:

oP = 9@ 2 1/3

O oy B D 1 (2.6)
where
2
9 I w 3 w
P—aX [D( 2+v )]+(1 V) By[ 8x3y
ox
o= 2|p :] ’: aw azw)'1
ox 8x8 oy axz g
and therefore leads us to assume the proportionality relations:
A—E— -1-[D(z+z)+D +vz )+ (1-v)D_z_]
1" & a 7t 2t Dozt vE+ (1-v)Dgz,
-9, -]:[D(z +z )+(1 D _z_ +D_(z,.+vz,)]
M1 Ta " Ta s vIDyzg +Dg(zgt va,
A+ Z
A3 12, 1 2.7)

2(1—v)z5_ a ’
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or, in terms of the original w and D variables:

2

2 2 2
(Vzw)2 +2(1-v) [(a W) -2 ;V : ;V:] B -;—D_Z/s(a + (32W2) (2.10)
axy 9  ay

Equation (2.10) is a second order nonlinear partial differential equation
in the two dependent variables D, optimal flexural rigidity,and w, optimal
displacement mode. Together with equation (1. 8) it forms a system of
simultaneous partial differential equations leading to the solution of the optimiza-
tion problem.

(2. 10) can also be rewritten in terms of the optimal thickness distribution

h and w, as:

2 ¥ 2 .2 2 2
2w + 2(1—v)[( 9 W) _8 ¥ 9 ‘2”:] = 4(1; ) pm? ——“*;W (2. 11)
ox 9y ox 8y h

the constant a* being defined as

o

a*=2,

™

and, together with (1.7), forms a system of two simultaneous partial differential
equations for the two unknowns h, optimal thickness distribution, and w, corre-
sponding displacement mode, the latter being known up to a constant multiplying
factor only, as usual. o* can be shown to be positive, exactly as for the sand-

wich plate equation. Let

2
- 2
40 2

The solution w will be of the form cw 0’ where w 0 satisfies:

2 \2 2 2 2
(vzw)2 +2(1—v)[( 9 “’) _ 38 ‘2" 8 ;’ _q1 4+ 212V lE"’ pmfwz/h2 (2.12)
dxoy X~ oy

120




For a simply-supported rectangular plate, the solution of the optimization

problem reduces to that of the two simultaneous partial differential equations:

2 2 2 .2 4 2 2

2 .2 1 * 4

(Vw)" + 2(1-v)[( 9 “’) - 3;" 0 ‘2"] = I 5 +1_2) LW 2“’ (2.13)
ox0y ox~ 8y 3 a b T

2_4 o 2 8o _2
TV w+ 67[:ax P (V W)+ay -8—5;(v wa
2

2 2 2 2 2
or o r o w o w or or Or Ow
+3 2(=) +r—L{l — + v — +2(1+v)[2—-——+7-—————
ox 8x2 8x2 8y2 ox Oy ox0y 0xdy
2 2 2
or 2 8 3 9 1.2
+ 2(8_T) +T :’2' ;V +V ‘zv - 'rr4(1—2 +—2) w=0 (2.14)
y oy oy 9x a b

T=h/ hO being the non-dimensional optimal thickness distribution (r =1 for the
uniform reference structure).

The boundary conditions for simply-supported edges are:

w=0 and 7 8—‘2!=0 along x=0,a
ox
2
o w
w=0 and 17 " 0 along y=0,b (2. 14a)
9y

For clamped edges:

ow
w=0 and ox =0 along x=0,a
ow
w=20 and %- =0 along y=0,b (2. 14b)

A computational approach at this stage of the optimization process seems

now inevitable, and the above system seems suitable to such an approach.
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Equation (2. 12) is very similar to the optimality condition derived by
4
Suhubi 5 for the optimal plastic design of a plate using an entirely different

approach.
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PART E

THE OPTIMALITY CRITERION: A SUFFICIENT CONDITION
FOR AN EXTREMAL

The nonlinear partial differential equation to which the entire system of
necessary conditions reduces in each of the three cases considered so far under
the assumption of prescribed vanishing displacement at the edge is the expression,
in each case, of an optimality criterion expressing the constance of the energy
distribution of the system, which is a sufficient condition for an extremum and
was first derived by Prager for a broad class of structural optimization problems.
The system of two partial differential equations to be satisfied simultaneously or
not by the optimal displacement mode and the optimal thickness distribution,
which is formed by this optimality criterion and the original constraint equation,
and to which each of the aforementioned cases reduces is therefore necessary and
sufficient. For the shear plate, uniqueness of the optimal solution follows.

When the displacement is not required to vanish along the edge, Prager's
criterion still applies, but has to be written in a three-dimensional space. The
above fact agrees with the validity of the proportionality assumptions made in the

course of the derivation of the optimality condition.

* *

Equations (B.2.8), (C.2.10) and (D. 2.11) are nothing but the expression
of a very general optimality criterion stating the uniformity of the energy
distribution throughout the structure under consideration, valid for three dimen-
sional structures to be optimally designed under the most general assumptions.

?

It was first derived by Prager4 and is an alternate form of stating the so-
called "conservation of the Lagrangian density' which was pointed out by Ashley

and McIntosh.T

TThe term Lagrangian density which was introduced by Ashley and Mc:Intosh13 in
optimal frequency design has its origin in the similarity between the Lagrangian
of Classical Mechanics, difference between the kinetic and potential energy, and
the expression G-¢ H, difference between the potential energy density and the
quantity pwfwz , which can be viewed as a kinetic energy density.
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Using Prager's notai:ion,46 the structure is to be designed to satisfy
a single behavioral constraint prescribing the value of a scalar @ itself
characterized by a global minimum principle involving a field ¢ associated with

the structure, and having one of the following forms:

® = min / FlepldV (1a)
A
f GlepldV

& = (1b)

.V

mm —
f H[ep]dV
v

V being the volume occupied by the structure. When the constraint is on the
fundamental frequency of vibration, ® is the square of the prescribed value
wf of the frequency and, from Rayleigh's principle follows that the constraint is
of the form (1b) above, where Gop] is twice the strain energy density of the
field ¢, and Hg] is plcplz, where p is the density of the material.

Prager has proven that when the behavioral constraint is expressed by a

minimum principle of the form (1a), a sufficient condition for an optimum is:
F = Constant (2a)

on the portion of the surface S where vanishing surface tractions are prescribed.

When the constraint is in the form (1b), a sufficient condition is:
G -® H = Constant (2b)

on that same portion of the external surface S.

The above conditions can also be shown to be necessary. *

*The general formulation of the sufficient conditions above is actually slightly
more complex, and the best way to express them is, as did Prager, to use
notations from set theory. The reader is referred to references 46, 47 for more
precision.
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A proof of the sufficiency of the condition of uniform energy distribution,
which we believe to be original, will be given below for the case of interest to us,
the minimum-mass design of a structure (one, two or three-dimensional) for a
given fundamental frequency of free vibration. This proof makes use of Rayleigh's
principle.

Let 8 be the set of all structures with the same constant density p
similar to the uniform reference structure D 0 and all having the same funda-
mental frequency of free vibration Wp under the same support conditions.

Among those, at least one, which we shall call D, is assumed to be such that its
energy distribution is constant throughout the volume V it encloses. If © is
the displacement field associated with it, Gp] twice the strain energy density

of the field, we assume that:
- 2 _2 2
Glp] -wp% = c @)
and, from Rayleigh's principle, W is exactly given as:
f G[pldV
2 v

. SU— (4)

f
-2
f pe dv
v
rewritten as:

f {G[Z;].wfp;z} dv = 0 (4a)
v

Now consider any structure D member of the above set and occupying a volume

V, with the corresponding field ¢. From Rayleigh's principle,
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jG[q;]dV
2 Vv

W,

T .
_/;mde
v

and, ; being the field corresponding to the structure 5, we also have the

(5)

inequality:
G[pldV
‘*’f A 6)
Jfoitas

rewritten as:

/{G[E{,] - m?pgz} avz0 (62)
v

Subtracting (4a) from (62a),

/ {G[E] - pEZ}dv 20 @)
V-V

and, by the use of (3), the inequality reduces to:

[ aveo
V-V

or

VsV (72)

The volume V occupied by the structure D satisfying the condition (3)

is therefore smaller or equal to the volume V occupied by D. As the structure
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D was arbitrarily chosen among the set §, we are led {o the conclusion that a
structure satisfying (3) has the smallest possible weight* among the structures
belonging to the class ® under consideration. (3) is therefore a sufficient
condition for an extremal of the weight under the conditions already stated.

The above sufficient condition is intuitively not at all surprising: this
uniformity of the energy distribution is a very general and logical property
encountered whenever one wants to make the best out of a given system, and
should be considered as a law of nature. In the case of a vibrating plate with
uniform thickness, the efforts are not uniformly distributed throughout the plate,
and some parts undergo more stress than others. We might say that the uniform
plate is not ideally designed for vibration purposes, and it reacts to vibrating
conditions in an unorderly and anarchistic behavior, which is however the best it
can do if it cannot modify its total shape. This is also a law of nature. Suppose
now that the plate could modify its shape and mass: it would still comply to the
laws of nature, but with more freedom now, and tend towards an optimal shape.
The non-uniform plate would now be perfectly adapted to the vibrating conditions
imposed on it, and the efforts would now be equally distributed throughout. This
is the best of all plates under the given conditions, such that the energy distribu-
tion is uniform and the same role is assigned to any point of the structure.
Understandably, such a structure will be optimally designed for the purpose at
hand, here the first vibration frequency being held constant, and this optimal
plate will have the lesser possible weight of all structures having the same
fundamental frequency, its matter being the more properly distributed of all of
them.

This uniformity of energy distribution attained by Nature in the best of
all configurations of a system is also a very general principle going beyond
structural optimization: Max Munk showed in 19 1848 that the minimum induced
drag of a wing is obtained if the distribution of lift over the span is elliptic,

corresponding to a uniform energy distribution over the wing area.

*The material is assumed to be isotropic with uniform density p.
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Let us now verify that we indeed obtained the optimality condition for the
three structures we considered.

For the shear plate, the strain energy density is:

2
v - S, &y (®)

and H is simply:
2
= pwW 9)

so that (2a) is expressed under the form:

2
) —, o = constant (10)

ow 2
(g) + (. W

ay

which is nothing but equation (B. 2. 8) which is therefore a necessary and sufficient
condition for an extremum. This equation was derived for simply-supported
edges, and was found to have a unique solution, given analytically by (B.2.9). It
follows that it is the solution to the optimization problem, and the shear plate
problem possesses a unique solution as described in Part B.

The strain energy density of a sandwich plate is, in terms of the lateral

46
deflection w(x,¥):

Eh2 2 2 2 2 2 2 2 2 2

s 0 ow ow ow owow [Ow
V = p 5 + — + 2{——1}) + 2v > T

4(1-v%) ax 9y Jxy, ax 8y ox 0y,

(11)
expressing the optimality condition (22 ) as:
2 2 2 2
2 2
azw ow o w 82w 82w 82w 2 2
— + ) +21—] +2v 2 . -B w = constant
ox oy (2:3)7 o~ By ox0y (12)
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where 52 is a constant whose value is the same as the ﬁz defined by (C. 1. 12).

This is nothing but another way of writing (C.2.10). Our proportionality
assumption (C. 2. 5) was thus perfectly valid, and (C. 2. 10) is not only a necessary,
but also a sufficient condition for optimality.

The fact that for sandwich structures the optimality condition does not
involve the design parameter 7 was pointed out by Prager and Taylor. 1

For the classical plate with varying thickness, the strain energy density

in bending is given by:43

2 2 \2 2 2
v = 2o (v ey (2] S22 (13)
8(1-v") 0x 9y, ox oy

and Prager's optimality criterion leads to the expression:

2 \2 2 2 2
- 2
h2 (Vzw)2 +2(1-v) dw) 8wiw JAd=Y) pw W2 = constant
9x 8y 2 .2 E f
ox oy (14)

which is exactly (D. 2, 11).

The precision and beauty of Prager's theorem is even more evident when
one considers the following important fact, which will also serve the purpose of
clarifying a delicate point, which is the assumption of proportionality in the
course of the derivation of the necessary conditions. This remark led to the
conservation property; however, it was compatible with the boundary conditions
only in the case of vanishing displacements at the edge: this was the case for the
simply-supported shear plate, for the clamped or simply-supported sandwich
plate and also for the elastic plate. On the other hand, Prager's theorem

seems to lead to the same optimality condition, whatever the boundary conditions
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are. A careful review of the conditions under which it is valid is therefore
necessary at this point.

Prager's theorem applies to optimal structures occupying the volume V
with the surface S. Each element of S is supposed to belong to one and only
one of the sets 8', S", S'"', where nonvanishing surface tractions are prescribed
on the elements of S' (for problems that we consider here S' = 0), vanishing
surface tractions on the elements of S'" (here the surface covered by the plate),
and vanishing displacements on the elements of S'"'. Moreover, the surfaces
S' and S'"' and the boundary conditions thereon are regarded as fixed
"ingredients' of the design problem. S"! is the boundary of the plate when the
displacement is prescribed to vanish along the edge. However, the portions of
the boundary which are not supported belong to S'", the plate being
viewed in the broad sense of a three-dimensional structure, and cannot be
regarded any more as fixed ingredients of the problem: in such cases, the
optimization problem needs to be viewed in three dimensions, and will not yield
an optimality condition as simple as (B. 2.8), (C.2.10) or (D. 2. 11).

Prager's theorem therefore still applies, but with an added dimension.
As we recall, when portions of the edge are free, the proportionality assumption
expressed by (B.2.7), (C.2.5) or (D.2.7) is no longer compatible with the boundary
conditions, rendering equations (B. 2. 8), (C.2.10) or (D. 2. 11) no longer valid.

This is one more evidence of the complete agreement between Prager's
optimality criterion and our results, obtained by an entirely different method

based on the calculus of variations in two dimensions.
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CONCLUSIONS

In our approach to optimization problems intwodimensions, ouflined in
the theory presented in the first part of this work and applied to the subsequent
structural optimization problems, we are confronted with a system of partial
differential equations to be solved inside a domain, together with boundary con-
ditions, both expressing a set of necessary and sufficient conditions for an
optimum. A computational approachundertaken at this stage, although being in
theory a classical problem of Numerical Ana.lysis49 would prove very awkward
and especially time-consuming: for a simple structure such as a sandwich plate
or an elastic plate and under a very simple constraint such as the fundamental
frequency of vibration being fixed, the necessary conditions yield a system of
46 equations in 46 unknowns, mostly first~order partial differential equations!
However, and this is one of the purposes of the present study, a careful study of
these necessary conditions in each particular case permits, under assumptions
later verified, to reduce them to only two partial differential equations in the
important unknowns. In some cases we will be lucky enough to find an exact
analytical solution, and in the majority we will have reduced the original problem
to a reasonable amount of numerical computation, following the well-established
pattern to solve numerically a single partial differential equation or a system of
a limited number of the same.

This property leads us to make the remark that, in the case of optimization
problems in one dimension, the necessary conditions for an extremum lead to two-
point boundary value problems, requiring extreme caution: no universal numerical
method has been found up to date to solve any kind of such problems (for example,
the powerful transition-matrix procedure which gave excellent results in a number
of cases in structural optimization failed for the panel-flutter case where the non-
linearity was too strong). However, for two-dimensional optimization procedures,
following the method presented here, we are in the end confronted with a problem

of a classical type and there is, in theory at least, a method permitting to solve it.
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This is a very important feature differentiating optimization problems

in one-dimensional space from those in higher dimensional spaces. This
is why we will be less pessimistic than R, Chattopadhyay50 about the
existence of practical solutions for problems of optimal control of
systems with distributed parameters, always keeping in mind that asking
for the services of a computer should be the last thing to do, and should
be done only after we have made sure that every possible method or
trick failed. It is not our goal to discredit the computer: its help is
tremendous in the majority of cases, and it brought the solution to
inextricable practical problems, but some reflection makes it more ef-
ficient and ... cheaper!

However, we will at this point raise several questions, as for-
mulated in Ref. 50.

Is it better to discretize the system itself in the first place, as
did Haug, 19 than to discretize the equations expressing the necessary
conditions for an extremal, obtained for the exact system? Are the ap-
proximate equations consistent with the original system equations? Is
the discretization of the system valid? Do the approximate solutions
converge to the actual one in the limit and do the errors made remain
bounded? These questions are unfortunately very difficult to answer
and are beyond the scope of the present investigation, but on their solu-
tion rests the possibility of obtaining results of practical interest.

It is our sincere hope that the present study will lay the theoretical
foundations necessary to future investigations in this entirely new field
of two-dimensional structural optimization, reducing any such problem
to the search of the numerical solution of a simple system of partial dif-
ferential equations: this is by itself a classical but unfortunately non-
trivial problem, and attaining the solution will rely mainly on the skill
of the researcher as well as the special nature of the structure investigated.
The choice of two-dimensional systems to be investigated is of course
very wide, and more general constraints can be considered, still fol-

lowing the pattern presented before.
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APPENDIX 1

INDEPENDENCE OF THE FORM OF THE SYSTEM OF PARTIAL
DIFFERENTIAL EQUATIONS ON THE OPTIMIZATION PROBLEM

In Part A, we showed that the constraint defining the optimal problem for
the shear plate, expressed in the form of the single partial differential

equation of order 2in w and 1 in h:
o) ow 8 ow 2
— m— — — + -
5 (h E )+ ay(h ay) k'hw=10 1)

could be put under the form of two systems of very different appearance, part
of the control variables being in one of them the thickness h, in the other one
its first derivatives.

Derivation of the necessary conditions for an optimum was made for the
first case in section B. 2.1 when the functional to be minimized is the integral
of h over a plane domain D under the given constraint. Let us show now that
the same answer is found if we start from the other system, obtained by the
means described in (A. 1), and derive from it the necessary conditions.

With this system as a constraint, the Hamiltonian takes the form:

= A A +A +A
H = ht M2y A+ AU+ A Vot iy 2t gty

V.Z +sz3

2
U tK Z + ") + v, (2)

The necessary conditions for an extremal are thus found to be:

37\1 ap,l_ 9

oy s ®)
&.’._afl_z_ ==A_ + u’3V1 4
& o8 1 h (%)
?ﬁ +i'3 =y + H3'2 5)
ox oy M Th (
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e, Ma_ V1% Vo%3
ox oy K3 2
b
A -
5 Mg =0
A+ 0
3" Mg
,J,Z
3%9
A - =0
4" h
_'”‘3""3=0
b4 " h

The form of the first equation suggests to try the substitution:

hz 9

A, =—
1 o

A =

b7
2 (o]

hz

Z_%2

A o= _ 12
4 o

_ A%
”’4 o

and (6) is rewritten as:

-@—-(zz)+a—(zz)=a—-z—1(vz+vz)
ox' 12 oy 13 h ‘172 "273

or, in ferms of w and h:
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2 2
(‘g%) + (%) + wV2w= a-;ll (= —+— 7o) (6)

But, from the original constraint,

oh 9w , oh dw

2 2
ox ox ' 8y oy = -k hw -hV w

so that (6) is put under the form:

ow 2 ow 2 2 2
() *Gy) —@tEwW (6)
which is nothing but equation (B. 2. 8), the solution of which led to the optimal
thickness distribution of the shear plate. It is easy to check that the hypotheses
(11) are consistent with the system formed by the original constraints, the necessary

conditions and the boundary conditions in the simply-supported case.
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APPENDIX 2

ON ANOTHER METHOD TO SOLVE THE PARTIAL DIFFERENTIAL
EQUATION ARISING IN THE SHEAR PLATE OPTIMAL PROBLEM

A very interesting alternative approach to solve the equation:

2 2
ow, ow 2 22
=) +(—) = ¢ +kK 1
) *ly) = © tEW (1)
and also applicable to more general boundary conditions than the one we considered,
i.e., w=0 along 8D, has been suggested by Dr. E. O. A. Naumann.

Let us make the change of dependent variable, introducing the new function

z defined by:

w = = sinh(kz) (2)

wlo

(1) reduces to:

2
0
o) +G) =1 ®)

or, using standard notations,

2 2
p +tq =1 (4)

This partial differential equation is a classical one, encountered in
particular in the theory of plastic torsion of cylindrical beams. It also arises
in geometrical optics, and is investigated under that name in Ref. 35.

The system of five ordinary differential equations for the characteristics

assumes the form:

dx

ds =~ 2p
dy _

ds 24

(continued)
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dz
ds

1
Do
—
Le]
[\
+
e
1\
e

(5)

It follows that p and g are constants along any characteristic, and that:

X -~-X,=2ps

0
y-y0=2ps
z—z0=2s

(6)

Hence the characteristics are straight lines. In view of the restriction (4)

on p and g, they are precisely those lines which make an angle of 45° with the

z-axis. A geometrical interpretation of those is given in Ref. 35, pp. 41-43.

Elimination of s in (6) results in:

XX, ¥,
p= ’ a=
0 0

and a solution of special interest is the cone of equation:

(amzg)” = ()" + (5-7,)

It can be used to form a complete integral of equation (1).

the boundary conditions, the following conditions need fo be met:

z=4 for x=¢§& and y=n1

and di = 0 along the given boundary curve m =n(§).
Thus:

@-0)2 = (x-£)% +(g-n)

and, by differentiation:

(N

To satisfy

(8)
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(z-L)dl = (x-£)dE + (y-n)dn = 0

or

(x-£) +(y-n)n' =0, W' =—2 )

Q| Q.

Equations (8) and (9) together with the relation between § and 7

expressed as:

n=n() (10)
and its derivative with respect to £:

n' =7"(§) (11)

are sufficient through elimination of §,%,n' to establish the desired function
z = z(x,y) which satisfies the partial differential equation (3) and the boundary
condition. For complex functions m(§), it may not be possible to find a single
equation and £ and/or 7 may remain as parameters of a set of equations.
However, z is still uniquely defined.

In the simple case where the boundary 6D is circular, the relation

between £ and m takes the form:

¢2in2-R (10)
together with the derivative:
E+nqn' =0 (11)
Elimination of ' from (9) and (11) gives:
nx=§y

Substituting for § into (8) and (10) gives:

2 2
(=07 = x + s -1 = & + ¥y - %) (8)
2 2 2
RY= 5 v q? - o A (19

y
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The parameter n/y can easily be eliminated, yielding,

(-1)? =R -\/x" + 5"
or
z=0(% R -\/x2+y2 )
Another simple example is the boundary defined by:
n=%
where
nt=1
(9) reads:
(x-€) +(y-n) =0
Eliminating £:
X+y-2n=20
or

(8) becomes:

2 x+y2 x+y2
(z-0)" = (x-%) +y -5
1 2
= 5 &y)

or

z=§:i:—1— (x-y)
2

When the boundary is defined by:

n=b

(10)

(11)

(9)

(8)

(10)
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n'=0 (11)
one immediately obtains from (9):

x-£ =0 (9)

(z-0)" = (y-b)"
or

z={ + (y-b)

Similarly for a boundary defined as:

£ -2 (10)
the solution is:

z=§ 1 (x-a)

The transformation of z into w is:

z-0= % [:sinh'l (]%”) ~ sinh ™} (ké):]
and, for w0 =0,

c

. sinh[k(z-0)]

W=

For the case of a rectangular plate, Dr. Naumann's results presented
above thus agree completely with the ones found in Chapter (B.2): for instance,
in region (4) of the rectangular domain (figure 3), for the boundary n =b, we
get:

z-4 = & (y-b)
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=&

w k

sinh[ +k(y-b)] = = sinh[k(y-b)], €=411

which is identical with the result we found.

Another interesting remark concerns the subject of which boundary controls
what part of the domain. The z-functions are planes which intersect the xy plane
at an angle of 450. Thus, the intersecting boundaries within the domain are simply
the bissectors of the angles of the boundaries, which are the dotted lines
represented in figure 3. The solution z can be visualized as being a roof over the
boundary base with a pitch angle of 45° all the way around (as well as its exact
complement, i.e., a pitch angle of —450).

One can also visualize the function z to be like a sand hill on top of any
shaped boundary with the sand of such a consistency that it can only support a
pitch angle of 45°.

To generalize the above results, it is obvious that the function z-{ is
+p, if p is the shortest distance of the particular point in the xy plane to the

given boundary 06D, which leads to the general solution for (1) given by:
€c .
W= sinh(kp)

if the boundary condition is w= 0 along 8D.

In case that w varies along 8D, i.e., d{# 0, equation (9) is still

applicable and reads:
d ,
(z-L) é = (x-§) +(y-n)n"' (9a)
Again, equations (8),(%9a),(10), (11), together with:
dt
aE = £(£ ,m) (12)

uniquely define the function z = z(x,y) solution of (1), and the above procedure
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can thus be used even if w varies in a known manner along the boundary 8D.
Our alternate approach of Chapter (B.2) could also have been extended to this

more general case, which is however of a limited practical value.
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APPENDIX 3

A COMPUTER PROGRAM TO FIND THE OPTIMAL THICKNESS
DISTRIBUTION OF A SANDWICH PLATE

C e x e Fezle 5 SR ¥e 5 Fr o e e e 42 A dr o e Ao e e e o edle o ofe e e e e o e Ae e e o e e o ek Aok
C I FUNCTION W *
C e 3o 3 e afe ¢ e T dede o o oo e afesfe el e e ofeole e e A oo e sfesde e e e s e el skl e
c
C
C CLASSICAL OPERATORS FOR THE PARTIAL DERIVATIVES
c STARTING FUNCTION IS W = SIN(PI#X/10)}#SIN(PI*Y/10}
c TEST PERFCRMED UN THE DOMAIN {0,10)(0+10)
c STEP 22 (49%4S MESH POINTS}
C
c VALUE AT EACH POINT GOT BY SOLVING AW2+BW+C=0
c ONLY PRCSITIVE RCOT KEPT AS RESULT , STOP OTHERWISE
c
REAL *8 W(51351)+T(51451),
IWXX s HAY WYY,
ZHXXX s hXXY sk XYY HYYY s
SHUXXAX sHXXYY 2 HYYYY,
4uI2XX{ELs51) g N2XY (51,51} H2YY{51,51),
SW3XXX(51551)sW3XXY(51451) ¢H3XYY{51:51) +H3YYY(51,51),
EWAXXXX({51 9451 ) s WEXXYY(51,51) sH4YYYVY(51,51),
THsH2 3 H3 4 H43 A4 By CDELTAYDIF24BETAZsHXsHY s TP4VIT,
8ABl.AB2
c
C SETTING UP A FEY CONSTANTS
c
BETA2=0.0239
H=042
H2=H#*H
H3=H2%H
H4=H3 *H
N=49
NL=51
A=~BETA2+10.64/H4
K=1
c
c INITIALISATION
c
DO 3 I=1l,Ml
DO 3 J=14N1

WCLsJ)=DSIN((I-131%H%*3.1416/10,)*DSIN((J~1}*H&3,1416/10.)
3 CONTINUE

50 DO 1 IY=1,N
DO 1 IX=1sN
==5422/H4% {H{IYH L IX42)+W{TIV+L e IX)#H{IY+2, IX41)+W{]1Y,1X4+1)})

C=1.247160/HGX{WIIY+29 IX+2)+H(IY o IX)=H{IYH+2IX}-H(IYIX+2))%%2
LH(WUIYELs IX)HHTIYHLIX+2) ) %#2/H4
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OO0

o0

30

144

2+ (WIIY 2, IX+L)4W(IY41X+1))*%2/H4
240, 66F(HOIVFI,IXIFH(IYH1, IX+2) )% W(IY+2 9 IX+¥1)}+W{1YsIX41))/H4~1.0
DELTA=B*B~4,0%A%*(

IF (DELTA.LT.0.0) GOTO 30

HOIY+1,IX+1)=(~B+DSQRT(DELTA}}/(2.0%A)
CONTINUE

DIF2=0.0

HRITE(E4+199) K

K=K+l

IF (K<EQ.51) GOTO 30
GGTU 50

WRITE{6,100}

CALL FLEVEL(W;-100.0+42.0:1540.015}
00 4 J=1,26
ABl={J~1]}*H
WRITE(6,109} AB1

DO 4 I=1,26
AB2={1~1}%*H
HRITE{6+1G8) ABZ24W(Jsl}
CONTIRUE

s e o ok e Aok s el o ke ot e s ek et Aot X
2w FYUNCTIGON T ok dorcsedoskoslop ook S draleofedode
oo e e e ek e e e e e ke e e o b e et e e e e e dokok

INITLALISATION GF T

DO 5 J=1,N1

bg 5 I=1,Nl
TLI+J2=DABS{1.5%0SIN{(J~1)*H%3.1416/5.)*¥DSIN{(I-1)&H*3,1416/5.1)
CONTINUE

DO 77 J=1.N

00 77 I=1sN

HXX={h{J+1, [+2}+W(J+1,1)-2. 0% (J+1, [+1) }/H2
WYY={ h{J 21 +1)+H(Js1+11~2.0%W(JS+1[+1)}/H2
WXY=(WH{I+25 142 40 {J0 D)W J+2, D)WL 1423)/4.0/H2
WXXY=(RIJH2 3T )40 {J+2, 1523 ~H I, 1) I,y 142}
1-2.0%W{J+2, I+1)+2.0%W{Js1+1))/2.0/H3
RXYY=(W(J3+2,142)-W{J+2, [} +W{J- 142} -H{Js 1)
1-2.0%U(J+1, I+2) +2.0%W{J+1+1))/2.0/H3
WXXYY=(W(J+29 1) +W{I+2+ 42D +H (S5 1} #HW (S5 142)

I=2, 0% (RIJ+1 g I)+WII+1, T +#2) #+nlld 4L ) +H{G#2: T+1) 1 +4. 0% W{J+1y [+1} ) /H4




s NaNel

OO0

60

62

64

IF ((J «EQ.1l) AND. (I «EQ. 1)} GOTO 60
IF ((J -EQ. N} AND. (I .EQ. 1)) GOTO 62
IF ((J.EQ.N}.AND.(I.EQ.N)} GOTO 6%
IF{(3.EQ-1) sAND.{I.EQ.N}) GOTO 66

IF (1.EQ.1) GGTOG 68

IF (1.EQ.N} GCYO 70

IF (J.EQ.1) GOTO 72

IF {J.EQ.N) GOTO 74

CASE OF AN INTERJIOR POINT

WXXXX={W( I+ Ly I+3) =4, 0% {J+1, [+2)#W(J+1s]1~1)

1=4 0%W(J+1, T )46, 0% (J+1,I+1))/H4
HYYYVS(HUJ#3, [+1) -4, 0% (J+2 [+ 13 4W(I~1,1+1)
1-4.0%h{Je 161} 46 0% {J+1,141))/HG

WUXXX=(M{J4) 143 )W J4+1 g I=1}~2.0%H(J+1,T142)+2.0%W(J¢)1,1)})}/2.0/H3
WYYY={W{J+3yT1+1)~H{J=L1s1+1)=2.0%H{J+2:T+1)}+2.0%H(Je I41))/2.0/H3
GOTO 76

CASE OF AN EDGE POINT

HXXAX= (W IF)L s L4345 0%W(J+1 ¢ T#1) =4, 0%W(J+1,142)=2.0%H{J+1s]) )/ Ha
I+(W(J+1, 043 )-3, 0% (J+1, I+1)42.0%d(J+1,13}/3.0/H%
WYYYY=S(HOJ#3:T4+1) 45,050 (J+ g [ 41 ) =4 OFH{J+2, 14102, 0%H(Js I+1) )/ H4
I+ (WlJ+34 41 ) -3 . 0% (J+1,I41)+2.0%H(J2141))/3.0/H4

WUXX={V{J+1, I+3)4W (%1, I+1)=2.0%W{J+1,142))/2.0/H3
I=(W{J#14143)=3. 0% (J4+1,I+1)+2.0%H{J+1+1))/6.0/H3

hYYY=(W{J43, I+1 ) 4W I+ 4 I+ 2)~2. 0% ({J+2,1+2)}}/2.0/H3

1= {W(J e3¢ 1+1)-3.0%H{J+1eI+L)+2.0%W(JsI+1})/6.0/H3

GOTO0 76

WXXXX=AH{ I+ 3 I43)+5. 0% W {J+Ly I+1)} =4, 0%W(J+1, [42)1=2.0*W(J+1,]))/H4
I+ (I +1a143) =3, 0% (J+1s 141} 42.0%W(J+1,1))/3.0/H4

HYYYY=(W{J=1s I+1)#5, 06N (J+1,1+1) 4. 0%W(J,I+1)=-2,0%d{J+2,0+1) }/HS
14U {d=1s141)=3,0%U(J+1,I1+1)42.0%¥W(J+2,1+1)1}/3.0/H4

WXXX={W(I+L s [ 43} +U(J+)1 3141 )~2.0%H(JI+1,1+2})/2.0/H3

I=(H (#1143} =3, 0% W {J+]1,[+1)+2.0%W(J+1,I))/6.0/H3
HYYY=~{W({J=1s I+1) +W(J+1,14¢1)~2.0%U(Js1+1))/2.0/H3

14U (3=l 141 )3, 0% {J+1,[+1)+2.0%H(J+2,1+1))}/6.0/H3

GOTO 76

UXXXX= (WS4 3 11D +5.0%W{J+1oI+1 )4 OFH{I+1+4 L) -2, 0%H(J+1,1#2) }/HE&
1e(uld+lcI=1)=3.0%W{Jt+Lls I+1 1 +2.0%W(J+1sI+2))/3.0/H4

HYYYY={W(J-1, I+1)45. 0% (J+1,1+1)~4.0H{J,1+1)-2.0%d(J+2,1+1)}/H4
T4{u{d=14I+#1)~=3. 0% (J+19T+1)+2.05H(J+2+142))/3.0/H4

WXXA=S=(H (L I-1)+W(J+1,1+2}-2.0%W{JI+1, 1} 1/2.0/H3

I+ (n{d+1,I-1)-3.0%0 (J+1y I+1)42.0%W(J+14142))/6.0/H3

WYYYS~(U{JI-1 g [+1) (Il 4I+13-2.0%W(Jel+1})/2.0/H3

1+ (W{J=1,[42)=3.0%0(J+1, [+ 1) 4Z.0FH({J+2,1+1})/6.0/H3

145




146

C

&6

68

7C

72

14

76

GOTO 76

HXXXX=(W{Jt1sI-1)45.0%H(J+Ls I+1)}=4.0%H(J+1,1)-2.0%0{J+1,1+2))/H4
I+ (H(J41 4 I-1)-3.0%H(J+1, I+1)42.0%4{J+1,142))}/3.0/H4

WYYYYS(W( I3 I+1) 45, 0%H({J+1eI+1) =4, 0%V (J424 141} =2.0%W{Jy1%1) )/ HE
I+ (W(J+3,1+1)-3.0%W(J+1,I+1)+2.0%W(Js1+1})}/3.0/H4

HUXXX=={W( 3+ yI-1)+H(J+1 1 +1)-2.0%W{J+1+1)}/2.0/H3
1+(W(J+1,1-1)-3.0%W{J+1s J+1)+2. 02N {J+1,14+2)1/640/H3

HYYY=AW{J 3, 1+#1) 0 (J+]l 1412 ~2.0%W(J+2,1+#1})/2.0/H3
1-(W{J#3+141}-3.0%W{J+LI+1)+2.0%N (2414121 /6.0/H3

GOTO 76

WXXXX={H(J+1, [43)45,0%W(J+1, I+ ) =4, OFH(J+1,1+2)}=2.0%W(J+1,1))/H4
14(W(J+1,143)-3,0%d{J+1,141)+2.0%d(J+1,1}1/3.0/H%
HYYYY={W{J+3 s I+ -4,0¥W(J+21+1)+VW(J-1,1+1)
1-4.0%W{Jy I+ L) +6 . 0%W(J+1,1+1) )} /HG

WXXX={W{J+L s I#3) +W( I+, I+1)=2.0%4(J+1,1+2))/2.0/H3
I=(H{J+1,1+43)-3.0%H(J+1s [+1)42.0%H{J+1,1))/6.0/H3

WYYY=(R{J43 3 T+1)—N{J~1 y [+1)—=2.0%W(J+2, I +1)+2.0%W(Jy1+1})/2.0/H3
GOTO 76

WXAXX=(W(J+L 9 I=1)45.0%H{J+1 3141} -4, O%¥H(J+1+1)-2.0%W (J+1,I+2)}/HG
I (H(J41yI-1)=3.0%H(J+]1, [+1) F2.0%H(J+1,1+2}))/3.0/H4
WYYYY=(W(J+35 141} -4.0%W(J 424 [+ )+H(J-1,1+1)

1-4,0%V{JyI+1) +6,0%H{J+1+1+1))/H4
HWXXX==(H{J+1, =2 )+W(J41,1#1}-2.0%U(J+1,1))/2.0/H3
I+{W(J+1,I-1)-3.0%H{J+1+I+1) +2.0%W{J+1,142}}/6.0/H3

WYYY=(W{J+3 e I41)}-H{J-1 ;1413 -2,0%H{J+2,141)42.0%H(J,1+1))/2.0/H3
GOTO 76

HXXXX={W(J+1; [¢3)=4,0%U(J+1,T+2)+W(J¥1,1I~1)

1-4. 0% (J+1s 1) 46, 0%d(J+1s1+1))/H4
WYYYY={i{J#3,I+1)+45.0%U(J+1 s I+1)} 4. 0%¥H{Je2,I+1)~2.0%W{J,1+1)}/H4
L4 {W{J#3,T141)-3.0%HW(J+1, I+1742.0%W(J,1+1})}/3.0/H4

UXXX=(W(J+L s I#3) =W (J+1sI~11-2.0%H{J+1Ls1+2)+2.0%W{J+1+1))/2.0/H3
HYYY=(W(J+3, I+1) #d{J+]1,1+1)-2.0%W(J+2,1+1))/2.0/H3

1= (W (J43 141 )-3.0%W(J+LsI+1}+2.0%W(J,1+1})/6.0/H3

GOTO 7¢

UXXXX=(W(J+ Ll I43)-4,0%H{J+L s [+2) W (J+1s1~1)
1-4.,0%W(J+1,1)+6.0%W{J+Ll,I+1})}/H4

HYYYY S (W(J=1, I+1)45.0%W{S+1 s I41) =4, 0%H{Js [+1)~-2.0%W(J+2,41%1))/HSG
1#(H(I- 19 I+1 )3, 0%W{J+ 19 I+1)+2,0%W(J+2¢1+1)}/3.0/H4

WXXX=(W(J#1, T43 ) =UH{J+1I-10-2. 0%H(J+1,[+2)}+2.0%H(J+1,1))/2.0/H3
HYYY==(a(J-1s I+ ) +H(J+1sI41)~2.0%N{JsyI+1})}/2.0/H3
14(H(I=1,1+41)}-3.0%W(J+1,I1+1) 42, 0*H(J+2,1+1))/6.0/H3

WH2XX(J+1, I+1)=WXX

HW2XY(J+&ls [+1)=NWXY
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117

55

80

H2YY(J+1ls 141)=HYY
HWIXXX{J+1a1+#L)=UXXX
W3XXY{J+1 91 +1)=UHXXY
W3XYY (J+141+1)=HXYY
W3YYY(J+1l,1+1)=0YYY
WAXXXX{J+1s I+1)=UXXXX
WaAXXYY(J+l; [+1)=WXXYY
HaYYYY(J+1: I+1)=HYYYY
CCNTINUE

K=1
DIF2=0.0

DO 6 J=14N
D3 & i=1,N

A==2,66/H2%{W2XX(J#1y L+ 1) +H2YY(J#1,1+1))

L+HAXXXX(J+L, T+#1) 2, 0FWAXXYY{S+1, I +1) +H4YYYY(J+1,141)
Z2=BETA2*WU(J+1,1+¢1)

B=({H2XX{JI+1s I+1) 40,33 %H2YY(J+14 [+1) I R(T(I#L,142)4T(J+1,1))/H2
141,245 (TUU+2, 1421 4+T{Jy [)-T(I+20 01T (J2142) ) =W2XY(I+1: [ +1) /4. 0/H2
2+ (0o33¥U2XX(I+L s I+1)+H2YY (J+1 4 141} ) E(T(I42, I+1)&T(J4I+1) }/H2
SH(USXXX(J+L g I+ VHWBXYY S+l I+ L) ) X(T(J+1,142)-T(J+1,1))/H
4+ (HUBXXY(I+L o I+ 4WYYY (U4l I+ 1D I R(TLU+2,1+2)~T (S I+1))/H
5=0.632*BETAZ*H(J+1l,1+1}

TP=—B/A
DIF2=DIF2+4{T(1+14J+1)-TP) %2
T(J+1l41+2)=TP

CONTINUE

WRITE(6,200) K,DIF2

IF{(K<EQ.150) .OR. {DIF2.LT.,0.001)) GOTD 80
K=K+1

60TO 55

FINAL RESULTS FOR FUNCTION T

WRITE(64107)

D8 7 J=1,26
ABl=(J-1)*H
HRITE(6+110} AB1

DO 7 I=1l,26
AB2=(1-1}%H
HRITE(G6:111} AB2,T(J,I)
CONTINUE

HX=10./49.
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100
107
108
109
110
111
199
200
600
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HY=HX

VIT=0.0

DO 2 1=2449

DO 2 J=2,49
VIT=VIT+T{J=1sI-1)#T{J+2:I-1)+T(J=1214+2}+

1 TUIH+2:I142)-13.0%(T(Js I-11¢T{J+1,:1-1)+

2 T{J=1eI)eTCI42 1) +T{U=1,14+1)+T(J$2,1+1)

3 FTUI eI #2) 4T J41,142) ) #1609, 0%(T(Js1)+T{J+1,1)
4 +T(J:I+1)+T(J+1,1i¢1))

CUNTINUE

VIT=VIT*HX*¥HY/24.0/24.0
WRITE(64600) VIT

CALL ELEVEL(T,-100.0,2.0,15,0.015)

FORMAT(1H1,10Xs *FUNCTION W *,///}

FORMAT(1H1:10Xs "FUNCTION T '+//)}

FORMAT(1IH ,15X3E16.7515XsE 6.7/}

FURMAT{1HLly 'LINE Y=%4E16.7¢//7125Xs X 515X+ H(P) s/}
FORMAT(1HLy 'LINE Y=',E16.74// 925Xy " X'515X,"T(P) %4/}
FORMAT{1H 415X;E16.7315XsE16.71/)

FORMAT(1H »*ITERATION Ne 3%413¢/)

FORMAT(1H ,'ITERATION N. 3'9I3,5X,*DELTAZ 2:%,E16.7+/)
FORMAT{1Hl, *VALUE OF THE INTEGRAL IS :':El6.7://)
RETURN

END




SUBROUTINE FLEVEL(Z+WL s UL,NBL+TOL)
REAL *8 ZL,WL,UL,TOL
DIMENSION Z(51,451})

TRACES THE LEVEL-LINES FOR A TABULATED FUNCTION ( VALUES IN Z(JsI)}
WL IS THE LEVEL UNDER WHICH *?' IS PRINTED

Ui 3AME FURCTION FOR THE UPPER LEVEL

N3L IS THE NUMBER GF LEVELS (STEP .1 ASSUMED)

TOL IS THE HALF OF THE WIDTH OF THE BOUND

PRCGRAM PRIKNTS OUT THE LEVELS IDENTIFIED BY LETTERS ON ONE PAGE

OO0

INTEGER LIT #2(15)/%A "4%B *+'C "+'D "4'E *4'F '4'G "4°H
1 L3 SO DT I "G I R IO Y I I D N I T B O
INTEGER PAGE #2{51,51)

INTEGER *2 QUEST/*? ¢/,BLANK/* '/

DC 1 I=1,51

DO 1 J=1,51

PAGE(JI)=BLANK
1 CONTIAUE

DO 2 J=2,50

DO 2 1=2,50

IF ({Z(Js D) .LTWL)OR{Z(J41)aGTUL}} PAGE{J+I)=QUEST
2 COGNTINUE

c
DO 3 K=1l,.NBL
VAL=0,1%K

C
DU 4 J=1451
b0 4 1=1,51

IF ((Z{J,1)aGTo(VAL-TOL)} )} AND(Z(Js L) .LT.{VAL+TOL}))
IPAGE(JsI)=LIT(K)

4 CCONTINUE

3 CCNTINUE

DO 5 J=1,51
WRITE(6:,500) (PAGE(52-J41} +I=L+51)
5 CONTINUE

¢

5C0 FORMATI(1H ,20Xs51A2}
WRITE(6,501)

501 FORMAT(1HL)
RETURN
END
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